Advanced LCS

GAassist

Dr. J. Bacardit, Dr. N. Krasnogor
Objectives of GAssist

• Generation of compact and accurate solutions
 – Allows the system to learn better
 – Generate compact and interpretable solutions
 – Avoid over-learning
 – Achieved by:
 • Explicit default rule mechanisms
 • Initialization policies
 • MDL-based fitness function
Objectives of GAssist

• Run-time reduction
 – Genetic Algorithms and LCS in general are quite slow
 – Moreover, our aim is to apply GAssist to huge datasets
 – We need some method to alleviate the computational cost of the system
 – Achieved by a Windowing technique called ILAS
Framework and workflow

• Individuals are interpreted as a decision list: an ordered rule set
• The semantically correct crossover operator of GABIL is used
• The GABIL representation is used for nominal attributes
• C++ and Java versions of the system. Java version available at http://www.asap.cs.nott.ac.uk/~jqb/PSP/GAssist-Java.tar.gz
Framework and workflow

- Representation
 - ADI representation
 - Explicit default rule mechanism
- GA cycle
The ADI rule representation

• Handling real-valued attributes by using discretization
 – **Discretization:** converting a continuous variable into a discrete variable with finite number of elements
 – There is no discretization method suitable for all datasets, because each algorithm introduces bias
 – Are all cut-points relevant?
 – ADI representation handles these two issues
The ADI rule representation

- ADI knowledge representation is based on GABIL
 - Predicate → Class
 - Predicate: Conjunctive Normal Form (CNF) \((A_i = V_i^1 \lor \ldots \lor A_i = V_i^n) \land \ldots \land (A_n = V_n^2 \lor \ldots \lor A_n = V_n^m)\)
 - \(A_i\): \(i\)th attribute
 - \(V_{ij}\): \(j\)th value of the \(i\)th attribute
 - The rules can be mapped into a binary string
 \[1100|0010|1001|1\]
The ADI rule representation

- The ADI representation generates the semantic values of the attributes (intervals) through the evolutionary process of the GA.
- These intervals are build over a set of base intervals generated by a discretization algorithm (called micro-intervals).
- This discretization can be of any kind.
The ADI rule representation

• How these intervals are evolved?
 – The intervals can split or merge
The ADI rule representation

• How these intervals are evolved?
The ADI rule representation

• We have a predefined pool of discretization algorithms
• Initialization assigns randomly a discretizer to each attribute-term of each rule of each individual
• In this way, the system is not completely tied to the bias introduced by each single discretization algorithm
Generation of compact and accurate rule sets

- The default rule mechanism
 - When we encode this rule set as a decision list we can observe an interesting behavior: the emergent generation of a default rule
 - Using a default rule can help generating a more compact rule set
 - Easier to learn (smaller search space)
 - Potentially less sensitive to overlearning
 - To maximize this benefits, the knowledge representation is extended with an explicit default rule
Generation of compact and accurate rule sets

• What class is assigned to the default rule?
 – Simple policies such as using the majority/minority class are not robust enough
 – We can combine the simple policies, but doubling the run-time
 – Automatic determination of default class
Generation of compact and accurate rule sets

• Automatic default class
 – All default classes compete in the population
 – A niching mechanism is used to guarantee a fair competition: different default classes might have different learning rate
 – The niching mechanism is disabled when all niches are equally good (in accuracy)
Generation of compact and accurate rule sets

• Initialization policy: covering operator
 – Inspired in the covering operator of XCS
 – Each rule initialization samples an instance from the training set
 – Two methods of sampling instances from the training set
 • Uniform probability for each instance
 • Class-wise sampling probability
Generation of compact and accurate rule sets

- MDL-based fitness function

sender Receiver
Instances + class Instances

How do we send the class of each instance?

1) Sending the classes
2) Generating a theory and sending it plus its exceptions
Generation of compact and accurate rule sets

- The solution that minimizes the length of sending the theory + its exceptions will be the best one
- MDL based fitness function is the minimization of the following formula:

\[MDL = W \cdot TL + EL \]

- \(W \) is domain specific. In order to avoid a manual tuning we have also developed an adaptive heuristic process to tune this parameter
Generation of compact and accurate rule sets

- TL depends on the knowledge representation used. We should not select the shortest theory length definition, but a definition that promotes well-generalized solutions.

- This is the most interesting feature of this fitness function. We can explore more efficiently the search space by guiding the search based on the content of the individuals.

- TL metric will promote
 - Individuals with few rules
 - Individuals with few expressed attributes
Run-time reduction

- A windowing mechanism named Incremental Learning with Alternating Strata (ILAS) is used.
- The mechanism uses a different subset of training examples in each GA iteration.

![Training set and Iterations diagram]