[image: image1.png]TheServerSide

Vour JREE Gommunity

As you read this chapter, we'd love your comments.

While we would love typo and grammatical checking, you can help even more by letting us know whether the chapter was clear, concise, at the appropriate level, and whether there are topics that should be added or taken away. When you are done reviewing, email the Word Document to: mailto:floyd@middleware-company.com

Reviewer Note: Reviews for this pattern are due Sept 26.

Version Number

When a client initiates an update on the server side, based on data that it had read in a previous transaction, the update may be based on stale data.

How can you determine if the data used to update the server is stale?

* * *

Transactions allow developers to make certain assumptions about the data they handle. One of these assumptions is that transactions will operate in an isolated fashion from other transactions, allowing developers to simplify their code by assuming that the data being read and written in a transaction is fresh and consistent.

In an EJB context, this means that when a use case is executed (usually as a method on the session façade running under a declarative transaction), the code can update a set of entity beans with the assumption that no other transactions can modify the same entity beans it is currently modifying.

While transaction isolation works well when a use case can be executed in just one transaction, it breaks down for use cases which span multiple transactions. Such use cases typically occur when a user needs to manually process a piece of data before performing an update on the server. Such a use case requires an interval of user think time (ie: a user entering updates into a form). The problem with user think time is that it is too long, which makes it infeasible (and impossible in EJB) to wrap the entire process of reading from the server, thinking by the user, and updating of the server in one transaction. Instead, data is usually read from the server in one transaction, processed by the user, and then updated on the server in a second transaction.

The problem with this approach is that we no longer have guarantees of isolation from changes by other transactions, since the entire use case is not wrapped in a single transaction. For example, consider a message board administrative system, in which multiple individuals have moderator access on a forum of messages. A common use case is to edit the contents of a user posted message for broken links or improper content. At the code level, this involves getting a message’s data in one transaction, modifying it during user think time, then updating it in a second transaction. Now consider what can happen when two moderators A and B try to edit the same message at the same time:

1. Moderator A reads Message X in a transaction.

2. Moderator B reads Message X in a transaction.

3. Moderator A performs local updates on their copy of the Message.

4. Moderator B performs local updates on their copy of the Message.

5. Moderator A updates Message X in one transaction.

6. Moderator B updates Message X in one transaction.

Once step 6 occurs, all updates executed by Moderator A will be overwritten by those changes made by Moderator B. In step 5, moderator A successfully updated Message X. At this point, any copies of the message held by other clients is said to be stale, since it no longer reflects the current state of the Message entity bean. Thus, Moderator B updated the Message based on stale data.

In message board system, such issues may not be such cause for concern, but imagine the ramifications of similar events happening in a medical or a banking system – they could be disastrous. The crux of the problem here is that the Moderator A’s and B’s actions were not isolated from each other. Because separate transactions were used for the read and update steps, there is no way to automatically check when the data used to update the server is based on a read which has become stale.

Therefore,

Use Version Numbers to implement your own staleness checks in entity beans.

A Version Number is simply an integer that is added to an entity bean (and its underlying table) as a member attribute. The purpose of this integer is to identify the state of an entity bean at any point in time. This can be achieved by incrementing the bean’s version number whenever an entity bean is updated. This incrementing of versions allows the detection of updates based on stale data, using the following procedure:

1. Carry the version number along with any other data read from an entity bean during read transactions. This is usually done by adding an entity beans version number to any Data Transfer Objects used to copy its data to the client.
2. Send the version number back to the entity bean along with any updated data. When it comes time to perform the update, carry the original version number back with the newly updated data, and compare with the entity beans current version before performing any updates.
3. Increment the entity beans version number when performing an update. If the current version of the entity bean is equal to that of the updated data from the client, then update the entity bean and increment its version.
4. Reject the update if the version numbers do not match. An update carrying an older version number than currently in the entity bean means that the update is based on stale data, so throw an exception.
Using version numbers in this manner will protect against the isolation problems that can occur when a use case spans multiple transactions. Consider the forum moderator example. If before step 1 the version number of message X was 4, then both Moderator A and B will retrieve this version number in their local copy of the message. At step 5, moderator A’s update will succeed, since the version he is carrying (4) matches that in Message X. At this point, Message X’s version number will be incremented from 4 to 5. At step 6, moderators B’s update will fail, since the version number this moderator is carrying (4) does not match the current version of Message entity bean X, which is currently 5.

When a stale update is detected, the usual recovery procedure is to notify the end user that someone had beat them to the update, and ask them to re-apply their changes on the latest copy of server side data.

The implementation of the version number pattern differs slightly depending on how the mechanisms used to access entity beans. If using Data Transfer Objects to get and set data in bulk on the entity beans directly (as done with EJB 1.X applications), then the version number is added to the DTO in the entity beans getXXXDTO method, and the version number is checked with the current version in the entity beans setXXXDTO method, as in the following code block:

public void setMessageDTO(MessageDTO aMessageDTO)

throws NoSuchMessageException

{

 if (aMessageDTO.getVersion() != this.getVersion())

 throw new NoSuchMessageException();

this.setSubject(aMessageDTO.getSubject());

this.setBody(aMessageDTO.getBody());

}

However, as discussed in the DTOFactory pattern, using DTO’s as a mechanism for accessing entity beans directly is deprecated practice as of EJB 2.0. Instead, the DTOFactory/Session Façade is responsible for getting data from an entity bean and updating the entity bean by directly calling get/set methods via the entity beans Local Interface.

Using this paradigm, a session bean is responsible for updating an entity bean directly via its set methods, thus the entity bean can no longer automatically check the version of a set of data before it updates itself. Instead, developers must adopt a programming convention and always remember to pass the version of a set of data they are about to update before beginning the update procedure, as in the following session bean method:

public void updateMessage(MessageDTO aMessageDTO)

{

 Message aMessage;

 try //to update the desired message

 {

 aMessage = this.messageHome.findByPrimaryKey(new MessagePK(messageID));

 aMessage.checkAndUpdateVersion(aMessageDTO.getVersion());

 //update the message

 aMessage.setBody(aMessageDTO.getBody());

 aMessage.setSubject(aMessageDTO.getSubject());

 }

 catch(IncorrectVersionException e)

 {

 this.ctx.setRollbackOnly();

 throw new StaleUpdateException();

 }

 catch (…)

…

}

Upon the call to checkAndUpdateVersion, the Message entity bean will check the version with its own internal version number and throw an IncorrectVersionException if the versions do not match. If the versions do match, then the entity bean will increment its own internal counter, as in the following code block:

public void checkAndUpdateVersion(long version)

throws IncorrectVersionException

{

 if(version != this.getVersion())

 throw new IncorrectVersionException();

 else

 this.setVersion(this.getVersion()++);

}

The version numbering scheme described here can also be thought of as implementing your own optimistic concurrency. Instead of having entity beans in use by a long running use case be locked from concurrent access, we allow multiple users to access the data, and only reject an update when we detect that stale data was used as a basis for the update. Databases that implement optimistic concurrency use a similar scheme to allow multiple clients to read data, only rejecting writes when collisions are detected.

Similar implementations can be found that use timestamps instead of version numbers. These two implementations are basically identical, although using version numbers is simpler and protects against a possible problems that can occur in the unlikely event that the servers clock is rolled back.

The version numbering pattern guarantees that use cases executed across transactions will be properly isolated from each other’s changes, in the same way that use cases that execute within a single transaction are guaranteed to be isolated from the operations of other transactions. However, what happens in the infrequent event that both moderators attempt to update the server (steps 5 and 6) at the exact same time? In this example, two instances of the Message entity bean could be loaded into memory both of which carry the same version number. The call to checkAndUpdateVersion will succeed in both instances, since the neither transaction has had a chance to commit (and update the version stored in the database). One of the transactions will normally commit first, the question then becomes: what happens when the second transaction attempts to commit?

The answer is that the second transaction will be correctly rolled back. Since both transactions are happening at the same time, the same transaction isolation level semantics that protect usecases that execute within one transaction will protect this particular operation from the conflicts. The way it achieves this differs depending on how your database/app. server handles concurrency:

1. Isolation of READ_COMITTED with app. server CMP Verified Updates. Here the application server will compare the changed attributes in the message entity bean (including the version number) with that in the database before committing. If the contents do not match (because a previous transaction incremented the version number and other attributes), then the application server will rollback the transaction. This is an optimistic concurrency check implemented at the app. server level, allowing you to use a transaction isolation level of just READ_COMMITTED, since the app. server guarantees consistency.
2. Isolation of READ_COMITTED with Verified Updates implemented in BMP. BMP developers can implement verified updates by themselves comparing the version number in the current bean to that in the database in ejbStore. This can be achieved by modifying the SQL Update statement to include a where version=X clause. Even moderator A’s transaction updated the database milliseconds before, this where clause will fail and the developer can manually roll back the exception.
3. Isolation of SERIALIZABLE with DB that supports optimistic concurrency. If optimistic concurrency is not implemented at the app. server level, then a transaction isolation of SERIALIZABLE must be used to ensure consistency. If the database itself implements optimistic concurrency checks, then it will automatically rollback the transaction of moderator B’s when it detects that ejbStore is trying to over-write the data inserted by the first transaction.
4. Isolation of SERIALIZABLE with a DB that uses pessimistic concurrency. Again, SERIALIZABLE must be used since the app. server won’t enforce consistency. However, since the database is using a pessimistic concurrency strategy, it will lock Message X’s row in the database, forcing the MessageEntity.ejbLoad() of the second transaction to wait until the MessageEntity.ejbStore() from the first transaction completes and commits. This means that when Moderators B’s transaction calls checkAndUpdateVersion this check will correctly fail, since the message X was not ejbLoad()’ed until after moderator A’s transaction had committed.

5. Isolation of SERIALIZABLE with a SELECT FOR UPDATE. Some application servers allow the CMP engine to be configured to issue a SELECT FOR UPDATE during ejbLoad, by editing a deployment descriptor setting. The purpose of this is to force a database that uses optimistic concurrency to actually lock the underlying row. This will cause the transactions to execute as in the previous option #4.

The takeaway point here is that in the rare instance where the update is happening at the same time, consistency is maintained, and the second transaction will either be detected at checkAndUpdateVersion time or the app. server or database will detect the collision and rollback the transaction – either way, consistency is maintained.

The version number pattern is most often used as a way to protect against stale updates that occur when using Data Transfer Objects. Once a DTO is used to copy some data off of the server, this data could potentially be stale. Version numbers help us detect the stale data at update time.

Questions for Reviewers:

Do you think the discussion of isolation and concurrencies towards the end is necessary?

All text and images are Copyright (2001

The Middleware Company. All rights reserved.

