[image: image1.wmf]int getNextKey()

findByPrimaryKey(String seqName)

//other ejb methods

. . .

String sequenceName

int currentKeyValue

SequenceEntityBean

As you read this chapter, we'd love your comments.

While we would love typo and grammatical checking, you can help even more by letting us know whether the chapter was clear, concise, at the appropriate level, and whether there are topics that should be added or taken away. When you are done reviewing, email the Word Document to: mailto:floyd@middleware-company.com

Primary Key Generation Strategies

Note to reviewers: Deadline to submit reviews/comments/suggestions for this chapter is Sept. 9

Generating primary keys in a portable, scalable and reliable fashion is a great challenge in EJB. This section will go over 3 different primary key generation best practices, used in creating primary keys for entity beans: Sequence Blocks, UUID for EJB and Stored Procedures for Autogenerated Keys.

For CMP, many application servers provide a proprietary way to create primary keys for entity beans. For example, Weblogic allows you to automatically generate a primary key by transparently using your databases built in sequence/counter. While in many cases this is a simple and viable solution, the problem with this approach is that when migrating code from one application server to another, the PK generation mechanism between the different CMP implementations may not be compatible. The only way to achieve portability for CMP entity beans is to call some external, user created structure, such as the ones described in the Sequence Blocks and UUID for EJB patterns.

For BMP, primary key generation responsibility rests solely on the developer. When using a relational database as the back-end, entity bean developers can make use of the databases built-in primary key generation service, such as an auto-incrementing counter. A highly proprietary feature, it is difficult to program an entity bean’s ejbCreate method to use the DB counter in a manner that is portable across databases. The Stored Procedures for auto-generated keys pattern describes when to use a DB counter, and how it can be used in a portable fashion. Alternatively, a BMP developer can also make use of the Sequence Blocks and UUID for EJB patterns.

Sequence Blocks

An entity bean developer needs a way to generate integer-based primary keys in an incrementing fashion and doesn’t mind possible gaps between keys.

How can integer-based incrementing primary keys be generated in a portable, efficient manner?

Using a simple incrementing number as a primary key mechanism provides a very efficient and maintainable solution for primary keys. Integers are efficient from a database perspective because they are more easily and efficiently indexed than large String-based integers (such as those generated by the UUID for EJB pattern or the HIGH/LOW pattern). They are more maintainable from a developer’s perspective because the primary keys start from 0 and increment upwards, resulting in short keys that can easily be manipulated by a DBA for quick and easy reporting purposes.

The Stored Procedures for Auto-generated keys pattern provided an easy solution for working with auto-incrementing keys built into an RDBMS database, but this pattern only works for BMP entity beans and requires a database that supports auto-incrementing keys, and requires the writing of an extra layer of stored procedures in between your entity beans and the database.

What is needed is some way to create sequences of integer primary keys, callable from CMP or BMP entity beans. One solution is to create an entity bean that represents a sequence. That is, an entity bean that simply stores an integer in the database and increments it every time a client requests a primary key. An example sequence entity bean is shown in figure X.1. The entity bean’s primary key would be a string that represented its name, allowing the existence of multiple sequences, each maintaining a different currentKeyValue.

[image: image5.png]TheServerSide

Vour JREE Gommunity

Figure X.1: Simple Incrementing Sequence Entity Bean

Other entity beans would call the Sequence Entity Bean from their ejbCreate methods. For example, a bank Account entity bean would execute code similar to the following pseudocode:

int ejbCreate(attrib1, attrib2, …)

{

Sequence aSequence = SequenceHome.findByPrimaryKey("Account");

this.id = aSequence.getNextKey()

. . .

}

There are many problems with this approach:

1. Performance. The Accounts ejbCreate will result in 4 database calls, breaking down as follows: One call to SequenceHome.findBy…, Sequence.ejbLoad, Sequence.ejbStore, and finally the Account entity bean’s insert. To optimize, the reference to the “Account” sequence could have been cached in the Account entity bean, but that would still result in 3 database calls.
2. Scalability. If the getNextKey method is running with an isolation level of serializable, this will result in unacceptable loss of scalability, as their could potentially be hundreds of entity beans waiting in line to get their primary key.
3. Need to code optimistic concurrency logic into ejbCreate. If the application server or underlying database uses an optimistic concurrency strategy, then the entity beans making use of the Sequence Entity Bean will have to catch TransactionRolledBack exceptions and re-try the call to getNextKey(), resulting in cluttered ejbCreate code and many retries, as many entity beans fight to make use of the same sequence.
A sequence entity bean would provide a simple way to generate integer based primary keys, but having clients directly interact with this entity bean to increment keys one by one results in poor performance and encapsulation of code. A better mechanism is needed, one that allows entity beans to make use of incrementing integers as primary keys but optimizes on the mechanism used to generate those numbers.

Therefore,

Front a Sequence Entity Bean with a Session Bean that grabs blocks of integers at a time and caches them locally. Clients interact with the session bean, which passes out cached keys and hides all the complexity from the other entity bean clients.

The previous solution of using a Sequence entity bean to increment a counter can be improved upon by modifying the Sequence entity bean to increment by blocks of integers (instead of one number at a time), and using a session bean to front the entity bean and cache blocks of keys locally, as in figure X.2. The Session bean becomes a primary key generation service, maintaining blocks of keys for any number of different sequences, and providing fast access to new keys in-memory, without having to access the Sequence entity bean (and thus the database) every time some entity bean needs a primary key.

[image: image2.wmf]int getNextKeyAfterIncrementingBy(blocksize)

findByPrimaryKey(String seqName)

//other ejb methods

. . .

String sequenceName

int currentKeyValue

SequenceEntityBean

int getNextNumberInSequence(name);

//other ejb methods

. . .

HashTable blocks;

int blockSize;

int retryCount;

SequenceSessionBean

ClientEntityBean

uses

uses

Figure X.2: Sequence Blocks architectural Layout

When an entity bean needs a primary key in ejbCreate, it would call the Local Interface of the Sequence session bean and ask it for the next available key. Using the bank Account example, ejbCreate in the Account entity bean would contain the following code:

//home and sequence session lookup (this could be done just one

//once and cached in setEntityContext)

SequenceSessionLocalHome ahome = (SequenceSessionLocalHome)

 (new InitialContext()).lookup("SequenceSessionLocal");

SequenceSessionLocal aSequence = aHome.create();

//get next key

this.id = aSequence.getNextNumberInSequence("Account"));

A complete implementation is included in appendex X.1, based on a submission from Jonathan Weedon at Borland. A pseudocode description of getNextNumberInSequence is provided:

1. Check its local cache of blocks for a block corresponding to the Sequence “Account”.

a. If none exists or if the cached block has run out of keys, then the Sequence Session will call the Sequence entity and get the next block of integers available for sequence “Account”.

i. When grabbing the next block, catch any transaction rollbacks (explained below) and retry a specified number of times.

2. Pass out a key from its local block of keys directly to the client entity bean. The session bean will pass out keys from its local block for all subsequent requests, until the block runs out, at which point repeat step one.

The Sequence entity bean can be implemented as a simple CMP bean whose primary key is a string corresponding to the name of the sequence. The only other value it needs to maintain is the current highest key (see Appendex X.1). As in figure X.2, the Sequence entity exposes only one method – getNextKeyAfterIncrementingBy(blocksize). This method simply takes in a blocksize, and increments itself by that size, returning the new highest key to the Sequence session bean that called it. The Sequence entity bean maps to a simple column in the database whose rows correspond to the current value of different sequences, as in figure X.3.

[image: image3.wmf]name

value

SEQUENCES TABLE

Account

Person

Country

80

30

100

Figure X.3: Mapping of Sequence entity bean to database table

Despite the ultimate simplicity of this CMP bean, special care must be taken to mark the getNextKeyAfterIncrementingBy method as TRANSACTION_REQUIRES_NEW in the deployment descriptor. Without this special setting, the block increment would be part of the transaction initiated by the original client entity bean, which could be a long one depending on the usecase. To limit locking and increase performance, the act of acquiring a new block should be an atomic operation, kept as short as possible.

The transaction and concurrency semantics of this pattern depend on the application server and database combination in use. In order to make the Sequence Session portable across different systems, it should be encoded to with a try/catch block that catches for TransactionRolledBackLocalExceptions, in order to catch possible optimistic concurrency conflicts. An example of such a conflict is if two Account entity beans in a cluster both request a primary key at the same time, and in both servers, the Sequence session bean needs to grab the next block at the same time. If not properly configured, the two instances of Sequence session beans may end up getting the same block of keys. The configuration required to correct this depends on how your database/app. Server handles concurrency:

1. Isolation of READ_COMITTED with app. server CMP Verified Updates. In this case, the application server will compare the contents of the Sequence entity bean to that in the database before transaction commit time. If it is discovered that a previous transaction already got the next block, an exception will be thrown. This is an optimistic concurrency check implemented at the app. server level, allowing you to use a transaction isolation level of just READ_COMMITTED, since the app. server guarantees consistency.
2. Isolation of SERIALIZABLE with DB that supports optimistic concurrency. If optimistic concurrency is not implemented at the app. server level, then a transaction isolation of SERIALIZABLE must be used to ensure consistency. If the database itself implements optimistic concurrency checks, then it will automatically rollback the transaction of the second sequence entity bean when it detects that ejbStore is trying to store trying to over-write the data inserted by the first transaction.
3. Isolation of SERIALIZABLE with a DB that uses pessimistic concurrency. Again, SERIALIZABLE must be used since the app. server won’t enforce consistency. However, since the database is using a pessimistic concurrency strategy, it will lock the “Account” row in the sequences table, forcing the SequenceEntity.ejbLoad() of the second transaction to wait until the SequenceEntity.ejbStore() from the first transaction completes and commits.
4. Isolation of SERIALIZABLE with a SELECT FOR UPDATE. Some application servers allow the CMP engine to be configured to issue a SELECT FOR UPDATE during ejbLoad, by editing a deployment descriptor setting. The purpose of this is to force a database that uses optimistic concurrency to actually lock the underlying row, as in the previous option #3.

For case #3 and 4, it is guaranteed that every SequenceSession will get a unique block of keys, since no two transactions will be allowed to read the same row until one of them has completed its ejbLoad-inrementBlock-ejbStore cycle. However, for cases #1 and #2, a try/catch block is necessary in Sequence Session, to retry the call. The takeaway point of this discussion is that if you keep the try/catch coded in the session bean, then the code itself will be portable across all possible configurations. Only the isolation levels and possible vendor specific CMP options described previously need to be changed in a deployment descriptor.

The advantages to the Sequence Block pattern are:

Performance. Despite the fact that this pattern requires a database, with a high setting for block size, this pattern approaches the performance of the UUID for EJB pattern, since most of the generated primary keys are occurring in memory.

Scalability. Even with a transaction isolation of serializable (on the Sequence entity), this pattern scales well since calls to getNextKeyAfterIncrementingBy don’t occur often.

Easy reuse. The Sequence Block pattern uses completely generic code. Once implemented, this pattern can be reused across projects with no problems.

Simplicity. The amount of code required to implement this pattern is very low. Furthermore, CMP can be reliably used for the Sequence entity bean.

Generates simple keys. The pattern generates simple integer based keys which allows databases to efficiently index primary key columns, and DBA’s to easily work with the primary keys.

The tradeoffs are:

Keys not guaranteed to be ordered. The primary keys of four different entity beans that are created one after the other (but who went through two instances of Sequence session beans) can be 10, 20, 11, 12 respectively, using a blocksize of 10. This is because different Sequence Session beans in the pool all have different blocks assigned to them.

Overall, the Sequence Block pattern provides a simple, cluster-safe mechanism for generating integer-based primary keys in a efficient, portable manner.

UUID In EJB

An entity bean developer needs a way to generate a string-based, universally unique primary keys in-memory, without a database or a globally unique singleton.

How can universally unique primary keys be generated in-memory without requiring a database or a singleton?

* * *

For many primary key generation schemes, the database is used to maintain the state of the primary key and is used to synchronize access to the key, such as in the EJB Sequence pattern. While these schemes work, the very fact that they require database infrastructure makes them difficult to implement, as they need to be coded to be portable across different databases, which becomes difficult due to the different ways in which databases handle issues such as row locking, etc.

Many non-database primary key generation schemes require the use of a Singleton, that is, an object of which only one instance exists across an entire application. Instead of a database, a singleton could now manage primary keys and be the point of synchronization for any clients (such as entity beans) that require a primary key.

The problem with this approach is that it is difficult to create a true single instance of an object across a J2EE application. A traditional Java Singleton (a class which contains a synchronized static instance of itself) only guarantees one instance per classloader, and a typical J2EE server will contain multiple running classloaders per VM. Another approach is to use a networked RMI object singleton, that is, an object that only lives on one server in your application, callable via RMI, thus achieving only one instance across your entire application. The problem now becomes scalability: every entity bean in your potential cluster of servers must synchronize access to this one RMI object, which can become a bottleneck, and also a single point of failure.

A better approach would be a primary key generation mechanism that does not require synchronization around a database or a global singleton. Such a mechanism would need to be decentralized (since there is no point of synchronization), allowing multiple instances of it to concurrently generate primary keys that are still unique.

Therefore,

Create primary keys in-memory using by creating a universally unique identifier (UUID), that combines enough system information to make it unique across space and time.

A UUID is a primary key encoded as a string that contains an amalgamation of system information that makes the generated UUID completely unique over space and time, irrespective of when and where it was generated. As a completely decentralized algorithm, there can be multiple instances of GUIDs across a cluster and even in the same server, allowing for fast and efficient primary key generation.

The original UUID specification is available in a Network Working Group Internet Draft by Paul Leach and Rich Salz
, however the algorithms defined in that original work will not work in an EJB context. The various implementations described there require proper singletons, access to a synchronized shared resource (database), and often to the IEEE 802 address hard coded into your servers network card. None of these features are possible in an EJB context, but it is still possible to create an equivalent GUID in EJB, which is the focus of this pattern.

[image: image4.wmf]xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

System.currentTimeMillis()

IP Address

System.identityHashCode(this)

Random Number

Figure X.1: Layout of GUID In EJB

A UUID is a string-based primary key consisting of 32-digits (spaces inserted only for clarity), encoded in hexadecimal as in figure X.1. The string is composed as follows:

1. Unique down to the millisecond. Digits 1-8 are the hex encoded lower 32 bits of the System.currentTimeMillis() call.

2. Unique Across a Cluster. Digits 9-16 are the hex encoded representation of the 32-bit integer of the underlying IP Address (an IP is divided into 4 separate bytes, appended together they form 32 bits).

3. Unique down to the objects within a Server. Digits 17-24 are the hex representation of the call to System.identityHashCode(this), which is guaranteed to return distinct integers for distinct objects within a machine (the algorithm returns the memory address of an object). This assures that multiple instances of a GUID generator on the same machine will not create duplicate keys, even if in different JVMs.

4. Unique within an object within a millisecond. Finally, digits 25-32 represent a random 32 bit integer generated on every method call using the Cryptographically strong java.security.SecureRandom class. Thus multiple calls to the same method within the same millisecond are guaranteed to be unique.

Altogether, a UUID created using this algorithm is guaranteed to be unique across all machines in a cluster, across all instances of UUID generators within one machine, down to the millisecond and even down to the individual method call within each millisecond.

There is two ways to implement the UUID pattern in an EJB context: as a plain java Singleton class or as a Stateless Session bean. The choice between implementations is really up to the tastes of the developers. The UUID algorithm is safe no matter how many instances of it are running within a VM. Implemented as a stateless session bean, the EJB server would pool instances of the UUID generator and have to intercept requests and perform the usual server overhead such as security checks, session bean creation, etc. As a plain java singleton there is none of this overhead, entity beans simply call the singleton instance that lives in their class loader (see EJB Strategy #3: Using Java Singletons can be a good practice).

A sample implementation of the UUID as a stateless session bean is provided below (utility and ejb methods left out for clarity), based on an implementation by Steve Woodcock (www.activescript.co.uk):

public class UUIDBean implements javax.ejb.SessionBean {

 // secure random to provide non-repeating seed

 private SecureRandom seeder;

 // cached value for mid part of string

 private String midValue;

 public void ejbCreate() throws CreateException {

 try {

 // get the internet address

 InetAddress inet = InetAddress.getLocalHost();

 byte [] bytes = inet.getAddress();

 String hexInetAddress = hexFormat(getInt(bytes),8);

 // get the hashcode for this object

 String thisHashCode =

hexFormat(System.identityHashCode(this),8);

 // set up mid value string

 this.midValue = hexInetAddress + thisHashCode;

 // load up the randomizer first

 seeder = new SecureRandom();

 int node = seeder.nextInt();

 } catch (Exception e) {

 throw new CreateException ("failure to create bean " + e);

 }

 }

 public String getUUID() throws RemoteException

 {

 long timeNow = System.currentTimeMillis();

 // get int value as unsigned

 int timeLow = (int) timeNow & 0xFFFFFFFF;

 // get next random value

 int node = seeder.nextInt();

 return (hexFormat(timeLow, 8) + mid + hexFormat(node, 8));

 }

}

When the session bean is first created, the hex format of the systems IP address and hashCode, as well as the SecureRandom seeder are created and cached for performance. On subsequence calls to getUUID() only the current time in milliseconds and the current random number need to be hex-formatted and added with the cached IP and hashcode, to efficiently create a primary key in-memory.

The advantages of the UUID for EJB pattern are:

Performance. Primary keys are generated in-memory, without requiring any synchronization around global singletons or databases.

Simplicity. The UUID pattern does not require complicated databases access and synchronization code, and can be deployed as a plain-old java singleton class.

The tradeoffs are:

Reliance on IP addresses. UUID’s generated on your local LAN will be encoded with local 192.168… addresses. However even on the local LAN, all IP’s are guaranteed to be unique.

Use of 36 digit strings for primary keys. The large strings generated by the UUID pattern may result in slower indexing capabilities on some databases. The long strings also make it difficult for DBA’s to manipulate primary keys (ie: performing regular maintenance tasks, reporting, etc).

Stored Procedures for Auto-Generated Keys

A BMP entity bean developer using a JDBC 2.X or 1.X driver needs a way to create a simple integer based primary key, unique to each entity bean. Most relational databases offer a proprietary, built in auto-generated key feature.

How can an entity bean make use of a relational databases built in auto-generated keys in a portable, efficient fashion?

Most databases offer a primary generation service that automatically generates a primary key for a newly inserted row. The most common such facility is an auto-incrementing counter (often called a sequence or an identity column), which allows you to create primary keys by simply incrementing a number, starting from zero. Auto incrementing counters can be queried for the next available number, which can then be used to populate the primary key column in a database table. Often, the auto-incrementing counter can be directly attached to the primary key column in a table, and will automatically populate the primary key field of an inserted row, with the next number in the sequence. For BMP programmers, auto-generated keys provide a simple, powerful, built-in mechanism for creating primary keys.

The EJB specification requires that the primary key of a newly created entity bean be passed to the container as a return value on the ejbCreate method. This presents a problem for BMP developers wanting to use auto-generated keys. When performing a JDBC insert, the returned result set contains a count of the number of rows inserted, not the primary keys of the inserted rows. The act of inserting does not give the developer the primary key that was generated. Given this restriction, how can a developer programmatically retrieve the value of the row that was just inserted?

In JDBC 3.0 (part of JDK 1.4) this problem has been solved. JDBC 3.0 extends the Statement interface by adding the capability to return the primary key of any inserted rows using standard API methods, as in the code example below:

PrepartedStatement pstmt = conn.prepareStatement();

stmt.executeUpdate("insert Into sometable(field1 ,field2)" +

 "values ('value1', 'value2')", Statement.RETURN_GENERATED_KEYS);

ResultSet rs = pstmt.getGeneratedKeys();

if (rs.next()) {

 int myPrimaryKey = rs.getInt(1);

}

Unfortunately, developers who do not have access to JDBC 3.X drivers for their database cannot make use of this standardized method for using an auto-generated key.

One solution is to code ejbCreate to perform an SQL select immediately after the insert, to get the primary key of the row that was just inserted. The problem with this approach is that there is that there may be no way to uniquely select the row that was just inserted. Remember that only the primary key is guaranteed to be unique in a row. If the other inserted fields are not guaranteed to be unique, it may be impossible to populate the where clause of the SQL select with parameters unique enough to select the row that was just inserted. Even if every inserted field is then used in the where clause (which will result in a long and poor performing query), it is possible that there may be more than one such row in the table with the same fields. Another problem is that this approach would require two database calls (which are network calls when the database is on a separate machine from the app. server): one to perform the insert, and one to retrieve the key of the last inserted row.

Many databases that support sequences (auto-incrementing counters) allow the creation of a sequence that is not tied to a particular table. Using this approach, a developer can ask for the next available number in one database call (usually by selecting on a DB provided procedure such as nextval(“sequencename”), which will both increment the counter and return the next number at once), and then use this generated number to insert the primary key along with other contents of the entity bean in the insert call. The primary key can then be returned from ejbCreate. Along with the fact that this approach requires two database calls, the main problem with this approach is that it is not portable across databases. Some databases that provide incrementing counter facilities (most notably SQLServer) do not allow you to create sequence counters that are not tied to a particular table. Thus it is impossible to get the next free primary key before performing an insert.

Auto-generated keys provide a powerful built-in mechanism for creating primary keys, but hard coding your entity beans to access a generated key through some DB specific mechanism limits their portability and often requires the use of multiple database calls in ejbCreate. An entity bean’s persistence code should ideally be portable across application servers and databases.

Therefore,

Use stored procedures to insert data into the database and return the generated primary key in the same call. Entity beans can be written to use the standard and portable JDBC CallableStatement interface, to call a stored procedure.

Stored procedures are a feature that all SQL compliant databases have. They allow the encoding complex data access logic directly into the database where they are compiled for optimum performance. In JDBC, stored procedures can be accessed in a completely database-independent format, using the CallableStatement interface. Stored procedures can thus be used to provide a database independent method of inserting a row into a database and retrieving the auto generated primary key within one database call. By writing your entity beans to use the standard CallableStatement API, portability across databases can be achieved, since the database vendor specific coding is stored in the database, not the EJB layer. Thus, any relational database that supports auto-generated keys can be used in a standard way, without requiring re-programming of your ejbCreate method if your database needs to be changed.

Using a stored procedure, the code in ejbCreate would execute a JDBC CallableStatement by passing in all of the entity beans attributes that need to be inserted as parameters. On the database side, the stored procedure would use vendor specific mechanisms to perform the insert and get the generated key, all within one stored procedure.

Using the a bank Account example, the ejbCreate for an Account entity bean would look like this:

public AccountPK ejbCreate(String ownerName, int balance) throws CreateException

{

 PreparedStatement pstmt = null;

 Connection conn = null;

 try

 (

 this.ownerName = ownerName;

 this.balance = balance;

 conn = getConnection();

 CallableStatement call = conn.prepareCall(

 "{call insertAccount(?, ?, ?)}");

 call.setString(1, this.ownerName);

 call.setInt(2, this.balance);

 call.registerOutParameter(3, java.sql.Types.INTEGER);

 call.execute();

 this.accountID = call.getInt(3);

 return new AccountPK(accountID);

}

catch (Exception e)

. . .

In the above code example, a CallableStatement is created that calls an insertAccount stored procedure. All the entity bean attributes passed in through ejbCreate are then passed into the insertAccount procedure for insertion. On the database side, the insertAccount procedure will insert the passed-in data into the appropriate table while at the same time determining the auto-generated key using vendor specific hooks. The stored procedure will then return the generated key to the client by placing it in the OUT parameter (in this case the last question mark in the procedure call), allowing java code in ejbCreate to access it after the call has been executed. A definition of the insertAccount stored procedure compatible with Oracle is included in Appendix X.1.

The advantages of this approach are:

Simplicity. If you are using an RDBMS with an auto-generation facility there is little reason to implement more complicated primary key generation tactics such as GUID and PK Leasing.

Portability. The CallableStatement interface is a standard JDBC API that is portable across any database.

The tradeoffs are:

Increased database infrastructure maintenance. A new insertXXX stored procedure must be created for every entity bean in the application, in-order to do the inserts on behalf of ejbCreate. Whenever a column is added to the underlying table or attribute added to an entity bean, the associated insert stored procedure will also have to be updated. This may not be such a major issue though, since stored procedure creation code is usually stored in the same scripts as the table creation code, which will need to be updated anyway.

Not all databases support autogenerated keys. All enterprise-class databases support some form of primary key auto-generation facility. For the ones that don’t, a simple incrementing counter can be manually manipulated behind a stored procedure if necessary. For example, a table that maintains the current highest primary key in use by all other tables in the database can be maintained, and the insertXXX procedures can manually increment those rows to maintain a primary key.

When writing BMP entity beans, the Stored Procedures for Auto-Generated Keys pattern provides a fast and portable way to make use of your RDBMS’ built-in key generation facility. Two other alternatives are explored in this section, that are useable in both BMP and CMP beans: Sequence Blocks and UUID for EJB.

Appendix X.1

Included is a complete implementation of the Sequence Block pattern, based on a submission by Jonathan Weedon from Borland Corporation. The Sequence entity bean exposes only Local Interfaces (it is only called by the Sequence Session Bean). The Sequence Session Bean exposes both Local and Remote (should be called by Local Interfaces in production, Remote is provided for testing purposes). Ejb-jar.xml descriptors are also included.

package examples.sequencegenerator;

public interface Sequence extends javax.ejb.EJBLocalObject

{

 public int getNextKeyAfterIncrementingBy(int blockSize);

}

Sequence Entity Bean Local Interface

package examples.sequencegenerator;

public interface SequenceLocalHome extends javax.ejb.EJBLocalHome

{

 Sequence create(String name) throws javax.ejb.CreateException;

 Sequence findByPrimaryKey(String name) throws javax.ejb.FinderException;

}

Sequence Entity Bean Local Home Interface

package examples.sequencegenerator;

import javax.ejb.*;

abstract public class SequenceBean implements EntityBean

{

public int getNextKeyAfterIncrementingBy(int blockSize)

{

this.setIndex(this.getIndex()+ blockSize);

return this.getIndex();

}

public String ejbCreate(String name)

{

this.setName(name);

this.setIndex(0);

return name;

}

abstract public int getIndex();

abstract public String getName();

abstract public void setIndex(int newIndex);

abstract public void setName(java.lang.String newName);

public void ejbActivate() {}

public void ejbLoad() {}

public void ejbPassivate() {}

public void ejbPostCreate(String name) {}

public void ejbRemove() {}

public void ejbStore() {}

public void setEntityContext(EntityContext unused) {}

public void unsetEntityContext() {}

}

Sequence Entity Bean Code

package examples.sequencegenerator;

import java.rmi.*;

public interface SequenceSession extends javax.ejb.EJBObject {

 public int getNextNumberInSequence(String name) throws RemoteException;

}

Sequence Session Remote Interface

package examples.sequencegenerator;

import javax.ejb.*;

import java.rmi.*;

public interface SequenceSessionHome extends javax.ejb.EJBHome {

 SequenceSession create() throws CreateException, RemoteException;

}

Sequence Session Home Interface

package examples.sequencegenerator;

public interface SequenceSessionLocal extends javax.ejb.EJBLocalObject {

 public int getNextNumberInSequence(String name);

}

Sequence Session Local Interface

package examples.sequencegenerator;

import javax.ejb.*;

public interface SequenceSessionLocalHome extends javax.ejb.EJBLocalHome {

 SequenceSessionLocal create() throws CreateException;

}

Sequence Session Local Home Interface

package examples.sequencegenerator;

public class SequenceSessionBean implements javax.ejb.SessionBean {

 private class Entry {

 Sequence sequence;

 int last;

 };

 private java.util.Hashtable _entries = new java.util.Hashtable();

 private int _blockSize;

 private int _retryCount;

 private SequenceLocalHome _sequenceHome;

public int getNextNumberInSequence(String name)

{

 try

 {

 Entry entry = (Entry) _entries.get(name);

 if (entry == null)

 {

 // add an entry to the sequence table

 entry = new Entry();

 try

 {

 entry.sequence = _sequenceHome.findByPrimaryKey(name);

 }

 catch (javax.ejb.FinderException e)

 {

 // if we couldn't find it, then create it...

 entry.sequence = _sequenceHome.create(name);

 }

 _entries.put(name, entry);

 }

 if (entry.last % _blockSize == 0)

 {

 for (int retry = 0; true; retry++)

 {

 try

 {

 entry.last = entry.sequence.getNextKeyAfterIncrementingBy(_blockSize);

 break;

 }

 catch (javax.ejb.TransactionRolledbackLocalException e)

 {

 if (retry < _retryCount)

 {

 // we hit a concurrency exception, so try again...

 continue;

 }

 else

 {

 // we tried too many times, so fail...

 throw new javax.ejb.EJBException(e);

 }

 }

 }

 }

 return entry.last++;

 }

 catch (javax.ejb.CreateException e)

 {

 throw new javax.ejb.EJBException(e);

 }

}

 public void setSessionContext(javax.ejb.SessionContext sessionContext) {

 try {

 javax.naming.Context namingContext = new javax.naming.InitialContext();

 _blockSize = ((Integer) namingContext.lookup("java:comp/env/blockSize")).intValue();

 _retryCount = ((Integer) namingContext.lookup("java:comp/env/retryCount")).intValue();

 _sequenceHome = (SequenceLocalHome) namingContext.lookup("SequenceLocalHome");

 }

 catch(javax.naming.NamingException e) {

 throw new javax.ejb.EJBException(e);

 }

 public void ejbActivate() {}

 public void ejbCreate() {}

 public void ejbPassivate() {}

 public void ejbRemove() {}

 }

}

Sequence Session Bean Implementation

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems,

 Inc.//DTD Enterprise JavaBeans 2.0//EN'

'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>

<enterprise-beans>

<entity>

 <ejb-name>Sequence</ejb-name>

 <local-home>examples.sequencegenerator.SequenceLocalHome</local-home>

 <local>examples.sequencegenerator.Sequence</local>

 <ejb-class>examples.sequencegenerator.SequenceBean</ejb-class>

 <persistence-type>Container</persistence-type>

 <prim-key-class>java.lang.String</prim-key-class>

 <reentrant>False</reentrant>

 <cmp-version>2.x</cmp-version>

 <abstract-schema-name>SequenceBean</abstract-schema-name>

 <cmp-field>

 <field-name>index</field-name>

 </cmp-field>

 <cmp-field>

 <field-name>name</field-name>

 </cmp-field>

 <primkey-field>name</primkey-field>

 <env-entry>

 <env-entry-name>datasourceName</env-entry-name>

 <env-entry-type>java.lang.String</env-entry-type>

 <env-entry-value>bookPool</env-entry-value>

 </env-entry>

 <resource-ref>

 <res-ref-name>jdbc/bookPool</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

</entity>

<session>

 <ejb-name>SequenceSession</ejb-name>

 <home>examples.sequencegenerator.SequenceSessionHome</home>

 <remote>examples.sequencegenerator.SequenceSession</remote>

 <local-home>examples.sequencegenerator.SequenceSessionLocalHome</local-home>

 <local>examples.sequencegenerator.SequenceSessionLocal</local>

 <ejb-class>examples.sequencegenerator.SequenceSessionBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <env-entry>

 <description />

 <env-entry-name>retryCount</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>5</env-entry-value>

 </env-entry>

 <env-entry>

 <description />

 <env-entry-name>blockSize</env-entry-name>

 <env-entry-type>java.lang.Integer</env-entry-type>

 <env-entry-value>10</env-entry-value>

 </env-entry>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

 <method>

 <ejb-name>Sequence</ejb-name>

 <method-name>getValueAfterIncrementingBy</method-name>

 </method>

 <trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

<container-transaction>

 <method>

 <ejb-name>SequenceSession</ejb-name>

 <method-name>*</method-name>

 </method>

 <trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Sequence Session and Entity EJB-JAR.xml

Appendix x.2

Here we have an example of a stored procedure that will insert a row into the database and return the auto-generated primary key field within the same database call. The primary key is needed to return from ejbCreate, as mandated by the spec. The stored procedure uses an Oracle sequence named accountID to generate primary keys.

create or replace procedure insertAccount

 (owner IN varchar,

 bal IN integer,

 newid OUT integer)

AS

BEGIN

 select accountID.nextval into newid from dual;

 insert into accounts (id, ownername, balance)

 values (newid, owner, bal);

END;

InsertAccount stored procedure for Oracle

� UUIDs and GUIDs - http://casl.csa.iisc.ernet.in/Standards/internet-drafts/draft-leach-uuids-guids-01.txt

All text and images are Copyright (2001

The Middleware Company. All rights reserved.

_1060160795.vsd

_1060416368.vsd

_1060446986.vsd

_1060447878.vsd

_1060423380.vsd

_1060424799.vsd

_1060431016.vsd

_1060422397.vsd

_1060190945.vsd

_1060193340.vsd

_1060416220.vsd

_1060191524.vsd

_1060160918.vsd

_1060160411.vsd

_1060160622.vsd

_1060159490.vsd

_1056820379.vsd

