[image: image1.png]As you read this chapter, we'd love your suggestions.

Have some comments on one of the strategies here? Let me know. Know any strategies you would like to include in this chapter? Write them into the document and email it (along with any other comments)to: mailto:floyd@middleware-company.com

EJB Strategies, Tips and Idioms

Don't use the Composite/Aggregate/Coarse-Grained Entity Bean Pattern

The Composite Entity Bean pattern (also known as the Aggregate entity bean or Coarse-grained entity bean pattern) was a common pattern for EJB applications built to the 1.x spec. The pattern arose in order to combat the performance problems associated with communicating with entity beans via the Remote Interface. To combat these problems, the pattern suggests creating a new entity type called a dependent object, a plain java class whose life cycle is managed by the entity bean. The problem with dependent objects is that they are impossible to create using your app. servers CMP engine, and are extremely difficult to implement using BMP. Managing the lifecycle of a set of dependent objects in BMP is equivalent to writing your own persistence engine.

Entity beans were meant to model the ‘entities’ or domain objects in an application. With the coming of EJB 2.0 CMP enhancements including Local Interfaces, entity beans can now be used to model the domain objects in your designs, as fine-grained as you like. Thus, EJB 2.0 deprecates the notion of dependent objects, as well as the Composite Entity bean pattern. If you are concerned about the overhead of transaction and security checks which may take place when calling an entity bean – don’t. Entity beans fronted with a Session Façade need only use tx_supports and not use security at all, since security and transactions are declared and checked in the Session Façade. After speaking to numerous J2EE server vendors, it seems clear that it is common for an application server to not perform transaction and security checks if none were declared in the deployment descriptor.

Use a Field naming convention to allow for validation in EJB 2.0 CMP entity beans

As of EJB 2.0 CMP, entity beans must be written as abstract classes, since the CMP engine will implement all the persistence logic on behalf of the developer. One side effect this has had is that developers no longer have access to the implementation of getXXX/setXXX methods, since these must be declared abstract and implemented by the container. Since Local Interfaces make it acceptable to allow other EJB’s to perform fine-grained get/sets on an entity bean, a developer will want to expose these get/sets on the Local Interface. The problem then becomes: how can a developer perform syntactic or business validation on data that is set, if they don’t have access to the implementation of a set method?

The solution is to use a simple naming convention and delegation scheme for set methods. Instead of exposing a CMP generated setXXX method (for an attribute called XXX) on the Local Interface, expose a method called setXXXField on the Local Interface. Inside the setXXXField method, a developer and implement proper validation checks and then delegate the call to the container generated setXXX method.

Don't get and set value/data transfer objects on entity beans

Another deprecated pattern from the EJB 1.X days is the use of value objects (more properly known as Data Transfer Objects) to get and set bulk sets of data from an entity bean. This pattern originally helped performance by limiting the number of get/set Remote calls from clients to entity beans by instead getting and setting DTO’s that contained bulk sets of entity bean attributes. This pattern resulted in some pretty serious maintenance problems for entity beans. For an indepth discussion of the problems with using DTO’s as an interface to entity beans, see the Data Transfer Object Factory Pattern (Chapter 5.4).

Luckily, Local Interfaces make it acceptable to perform fine grained get/set calls on entity beans. Thus using DTO’s to transfer data in and out of entity beans is a deprecated pattern. Developers should think of Data Transfer Objects as envelopes of data, used to communicate between tiers (the client and the Session Façade).

Using Java Singletons is ok – if used correctly

There is a lot of Fear, Uncertainty and Doubt (FUD) about the role of Singletons in EJB. The original Singleton pattern (described in the timeless classic Design Patterns, by the gang of four) suggests creating a java class that contains a static instance of itself, so that only one instance of the class will run in an application. The EJB spec states that EJB’s should not use static fields, nor should they use synchronization primitives (such as the synchronized keyword). Many developers have incorrectly assumed that this means that an EJB cannot call out to a Singleton, since the Singleton itself makes use of a static field and the synchronized keyword.

This assumption is false. There is nothing wrong with using a Singleton class, as long as developers DO NOT use it in read-write fashion, in which case EJB threads calling in may need to be blocked. It is this type of behaviour that the spec is trying to protect against. Using a singleton for read-only behaviour, or any type of service that can allow EJB’s to access it independently of one another is fine.

One caveat with using Java Singletons is that it is impossible to create a singleton in the classic sense – one instance of an object per application. At the very least, any Singletons used will have one copy per server JVM, and usually will have one instance per class loader (each deployed ejb-jar will have its own separate class loader, and its own Singleton if it uses one).

Use a java Singleton class when you would like to create a non-blocking service in which you do not mind having a few copies around, but do not want the pooling and memory overhead of implementing the service as a stateless session bean. For example, a primary key generator (such as the UUID for EJB or Sequence Block patterns) would provide a lighter weight and more efficient implementation choice than a stateless session bean.

Prefer scheduled updates to real-time computation

When building web-based applications, it can often be extremely expensive to go through the EJB layer upon every single request to compute a value that needs to be displayed on the UI, if the computation is a time consuming and resource intensive process.

 For example, on TheServerSide.com, the membership count number on the top right of the home page would require a delegation to the database to execute a select count(*) from users query, upon every single web request. With over 120,000 users, and multiple page views per minute, executing this query in real time is significant performance bottleneck.

Instead, a sprinkle of realism can help. Instead of executing a computation in real-time, use a scheduling tool such as Unix Cron or the J2EE Scheduler Flux to perform computations at regular intervals and cache output to disk. In the JSP’s, simple do a jsp:include on this cached file, instead of delegating the query to the server. Significant performance boosts can be realized by taking this approach.

In general, ask yourself if the part of the UI displaying really needs to be done in real time. For mostly read-only y browsing types of UI’s, it may not make sense to go through the EJB layer upon every web request. Therefore, prefer scheduled updates to real-time computation.

Got a strategy idea? Post it here!

If you have an idea that you would like to appear in this book, post it here. All contributors will receive recognition in the contributions section of the book. To help you start, use the format used in the first two pages of this chapter:

1. Explain the problem the strategy solves, discuss why it is an important problem.

2. illustrate with a real world example.

3. give a solution, explain how solution fixes things.

4. give a quick summary of the strategy

All text and images are Copyright (2001

The Middleware Company. All rights reserved.

_1060160411.vsd

_1060160795.vsd

_1060190945.vsd

_1060191524.vsd

_1060160918.vsd

_1060160622.vsd

_1060159490.vsd

