[image: image1.wmf]HashMap

Teller

get("accountNumber")

get("name")

get("balance")

put("balance", 123)

get("password")

Network

Account

getAllAttributes()

setAttributes(aHashMap)

As you read this chapter, we'd love your comments.

Feel free to insert new paragraphs or make typo corrections as you read. When you are done reviewing, email the Word Document to: mailto:floyd@middleware-company.com

Generic Attribute Access

An entity bean client needs to access the individual attributes of multiple subsets and/or views of entity beans.

How can an entity bean client efficiently access and change the values of multiple subsets and/or views of entity beans in a bulk, generic fashion?

* * *

Directly invoking methods on entity beans from non-EJB clients incurred significant performance overhead when using the entity bean remote interface. Even if using the local interface of an entity bean, this approach is discouraged due to tight coupling, poor transaction integrity and maintainability concerns. The Value Object pattern, alone or combined with the Session Façade pattern served to correct these problems.

The Value Object, Subset and View Value Objects patterns provide methods for efficient bulk access to the attributes of entity beans and also for marshalling data from session facades to client tiers. These approaches are effective, but also suffer several drawbacks:

High cost of change over time. The use cases in an application change over time. Different clients may need to access different views or subsets of server side data than were initially programmed. Using the value object approach (even with Value Object Factories), server side code (such as new value objects and associated creation logic) must be written to satisfy the changing data access needs of the client. Once an EJB project has been launched, access to server side programmers tends to be expensive, as is the EJB re-deployment process.

Does not scale well from small to large entity beans. The value object approach works well for small to medium sized entity beans, but does not scale well to large entity beans. Imagine a stock/bonds entity bean for a financial application. Such an entity bean could have well over 200 attributes. To write and expose getters/setters for all of those attributes could be a nightmare of tedious coding and an explosion in interface size.

Poor maintainability. Value Objects create a new layer, which can explode to thousands of objects in a large application. Imagine a distributed system with 30 entity beans. Each of those thirty entity beans would require a value object to marshal their state to and from the client tier. The applications use cases may also require that each of those entity beans have 2 different subset value objects, and 2 different view value objects. This medium sized system would thus require 120 value objects, and 120 value object factory methods to create them. Since the value object layer is tightly coupled to the entity bean layer, changes in entity bean attributes will cause ripples that could require changes in multiple value objects as well. In large applications, the value object layer can prove to very difficult to maintain.

Although simple and effective for small to medium sized systems, for large systems, the Value Object approach can slow down the development process, contribute to bloated data access code and reduce maintainability. The development/maintainability problems associated with value objects boil down to the fact that they are a domain specific interface to your data model. Dictionary.com defines a domain as a sphere of activity, concern, or function. For example, consider an Account entity bean as a domain. An AccountValue value object (as in figure X.X in the Value Object Chapter X) is thus an object that is specific to the domain of an account entity bean, and cannot be re-used across other entity beans in different domains; it would not make sense to return an Account Value Object from a Car Entity Bean. Value Objects are thus domain specific interfaces to entity beans. Since Value Objects, Subset Value Objects and View Value Objects are not reusable across domains, this results in EJB applications with potentially thousands of lines of code that essentially does the same thing – copies domain attributes data from an entity bean into a domain specific value object, and returns this to the client. For each use case in a system, this essentially identical logic is duplicated all over the place.

If the domain of an application is relatively simple, value objects are a great way to get the job done. If your domain requirements are more complex, an alternative to Value Objects is needed; one that is decouples attribute access from your domain model, but still allows bulk access and transport of data across tiers.

Therefore,

Abstract entity bean attribute access logic into a generic Attribute Access interface, using HashMaps to pass key-value attributes in and out of entity beans.
The Attribute Access interface is implemented by entity beans, and looks like:

public interface AttributeAccess {

 public Map getAttributes(Collection keysOfAttributes);

 public Map getAllAttributes();

 public void setAttributes(Map keyAndValuePairs);

}

Source x.x: Attribute Access Interface

Attribute Access provides a generic interface that completely replaces domain specific value object factory methods. The standard Java HashMap, available in any JDK, can replace an entire layer of Value Objects. The only dependency been client and entity bean code is the naming conventions placed on the keys used to identify attributes, described later in this pattern.

Clients access an entity beans attributes through the attribute access. Figure X.X in the Value Object chapter illustrates how a client used to interact with an entity bean through its domain specific getter/setter methods. Instead of explicitly calling a getter method for each attribute in an entity bean, a client can make one call to the getAllAttributes() method on the Attribute Access interface, and execute getters locally on the returned HashMap. Updates can be made on the same HashMap, and the entity bean can be updated by passing that same HashMap back to it in the setAttributes(aHashMap) method.

[image: image2.png]

Figure X.1: Client Accessing Entity Bean Attributes In Bulk

Instead of implementing separate Subset Value Objects, a client can just call the getAttributes(Collection keysOfAttributes) method, passing in a collection containing strings which identify the attributes a client is interested in. A client can thus dynamically decide which subsets of entity bean data they want to see at run time, eliminating the need for manual, design time programming of Subset Value Objects.

View Value Objects can also be replaced by HashMaps and the AttributeAccess interface. From behind a Session Bean Façade, session beans can grab attributes from different entity beans and easily combine them before passing to clients. One drawback with using the Generic Attribute Access pattern is that the HashMap class was designed for storing a flat map of attributes. Thus, copying the attributes from graphs of entity beans to a client in one bulk network call is not supported explicitly by pattern. Depending upon the complexity of the application, an application specific policy for flattening object graphs into a flat HashMap will be needed. Simple solutions that mirror the functionality of the Aggregate Value Object pattern would be relatively simple to implement.

Like the interface itself, the implementation of the AttributeAccess interface is generic. Under BMP, an entity bean can be further simplified by storing all of its attributes in a private, internal HashMap, rather than the obvious hard-coding of attributes that usually takes place. On large entity beans, this optimization can simplify an entity beans code greatly. Using this internal HashMap, the implementation of the methods on AttributeAccess thus become completely generic, reusable across BMP entity beans:

private java.util.HashMap attributes;

/**

 * Returns key/value pairs of entity bean attributes

 * @return java.util.Map

 */

public Map getAllAttributes()

{

return(HashMap)attributes.clone();

}

/**

 * Used by clients to specify exactly the attributes they are interested in

 * @return java.util.Map

 * @param keysofAttributes the name of the attributes the client is

 * interested in

 */

public Map getAttributes(Collection keysofAttributes)

{

Iterator keys = keysofAttributes.iterator();

Object aKey = null;

HashMap aMap = new HashMap();

while (keys.hasNext())

{

aKey = keys.next();

aMap.put(aKey, this.attributes.get(aKey));

}

//map now has all requested data

return aMap;

}

/**

 * Used by clients to update particular attributes in the entity bean

 * @param keyValuePairs java.util.Map

 */

public void setAttributes(Map keyValuePairs)

{

Iterator entries = keyValuePairs.entrySet().iterator();

Map.Entry anEntry = null;

while (entries.hasNext())

{

anEntry = (Map.Entry)entries.next();

this.attributes.put(anEntry.getKey(), anEntry.getValue());

}

}

Source X.2: Attribute Access BMP Implementation

In CMP, using an internal map of attributes is not possible, since the implementation of an entity beans classes is abstracted behind container generated get and set methods. When an internal map is not possible, the AttributeAccess interface can be implemented generically using the Java Reflection API. That is, in setAttributes, reflection can be performed on the key-value of the attribute a client wants to set. That is, if the key-value is XXX the setAttribute implementation will attempt to call setXXX(…) on the entity bean. Similarly, in the getAttributes method, reflection can be used to find all get methods on an entity bean, invoke them and populate a map for the client. If a developer would prefer not to use the Reflection API, then implementing the AttributeAccess method cannot be done generically for CMP. The developer will need to interlace his AttributeAccess implementation with IF statements that call hard coded get/set methods on the entity bean, depending on the key-value string.

In order to make the AttributeAccess implementation code reusable across all entity beans, a super class can be used to implement the interface methods, which are completely generic whether using the reflection method or the internal map of attributes style of implementation. All entity beans wanting to make use of the AttributeAccess services need only subclass the super class implementation, thus automatically exposing this unified interface to their attributes with no extra coding involved.

The final piece of the puzzle is how to name the keys, which identify the attributes of an entity bean. Not only do the attributes need to be identified by key, but client and server side programmers must need to agree on the naming conventions. Some sort of ‘contract’ is required between client and server. Several possibilities are discussed:

Establish a consistent naming convention. The client and the server can agree upon a documented, consistent naming convention for attributes. For an Account entity bean, “com.bank.Account.accountName” would be an example of consistent convention. The drawback with this approach is that the contract exists in the minds of developers only, when developing, it is easy to misspell the attribute name, resulting in costly development errors.

Define static final member variables in the entity bean remote or local interface. An entity bean client can make calls to the entity bean using references to static final variables containing the correct key-string required to get an attribute. For example, in-order to retrieve the attributes from an Employee entity bean; an entity bean client could use the following code:

//ask employee for his personal attributes

Collection aCollection = new Vector();

aCollection.add(Employee.NAME);

aCollection.add(Employee.EMAIL);

aCollection.add(Employee.SEX);

aCollection.add(Employee.SSN);

Map aMap = employee.getAttributes(aCollection);

Source X.3: Getting attributes using final static variables

Where the entity beans remote interface contains the following definitions:

public interface Employee extends EJBObject, AttributeAccess

{

//since attributes are stored in a hashmap in the entity bean,

//we need a central place to store the 'keys' used to reference

//attributes, so that the clients and the entity bean won't need

//need to be hardcoded with knowledge of the attribute key strings

public final static String ID = "EMPLOYEEID";

public final static String NAME = "NAME";

public final static String EMAIL = "EMAIL";

public final static String AGE = "AGE";

public final static String SSN = "SSN";

public final static String SEX = "SEX";

...

}

Source X.4: A Remote Interface Attribute Contract

This approach works fine when the client of the entity bean calls the entity bean directly (not through an intermediary). There are many instances where this is not the case, such as a 3 tier architecture using the Session Façade pattern. Here, it is the presentation logic in the servlets that chooses which an attribute to display to the browser, but it is a Session Bean that interacts directly with an entity bean. The problem is that the code that decides which attributes to display (needs to know the key-value names) needs to be in the servlet layer. This would require the servlet to have access to the entity bean remote interface, in order to use the key name contract. This would couple the presentation logic to the entity bean layer, reducing the benefits of the Session Façade pattern. A couple of solutions are discussed:

Shared final static member variables class. With this approach both the clients and the entity beans share access to a separate class consisting of final static strings (the keys of the attributes). This approach does not tie a client to a specific entity bean interface, reducing coupling between client and server. One disadvantage to this method is that should the key mappings need to be updated or added to, the new class would need to be redistributed to the client (and their JVM would thus need to be restarted).

Place the Attribute contract in a JNDI tree. In this approach, a singleton of sorts is maintained by placing a class containing the keys in a JNDI tree, accessible by client and server. Client and server code would not need to be recompiled or rebooted, when keys are changed/updated, since a central object in a JNDI tree would always contain the freshest copy of keys. The tradeoff with this solution is the overhead incurred in grabbing the contract from the JNDI tree whenever key values are required.

The Generic Attribute Access pattern has many advantages:

Excellent maintainability - eliminates the Value Object layer. The extra layer of domain specific value objects and all that repetitive value object creation logic is now eliminated in favour of the generic reusable Map and Attribute Access interfaces. This represents a potential reduction of thousands of lines of value object and factory logic to the minimal amount required for the AttributeAccess implementation.

Allows for dynamic addition of attributes at runtime. When using BMP, this pattern can easily be extended to allow for the ability to add and remove attributes from an entity bean dynamically. This can be achieved by adding an addAttribute and removeAttribute method to the interface, which simply performs operations on the attribute HashMap.
One interface across all entity beans. Entity bean clients can manipulate entity beans consistently via the AttributeAccess interface, simplifying client code. Entity beans are also simplified, as the AttributeAccess can be encapsulated in a super-class.

One data object (Map) across all clients. A Map of attributes is reusable from the Session Façade down to the JSPs. In particular, using a Map as a data container significantly reduces the complexity of the JSP code, as pages don’t need to be written with use case specific Value Objects that are tightly coupled to the entity bean layer.

Scales well to large entity beans. Whether an entity bean has 20 or 2000 attributes, attribute access logic is simplified to just a few lines.

Low cost of maintenance over time. New views of server side data can be created that does not require any server side programming. Clients can dynamically decide which attributes to display.

Like all patterns, using Generic Attribute Access has its tradeoffs:

Additional Overhead per method call. For each attribute call, clients must use an attribute key to identify attributes. Finally, attributes need to be cast to their appropriate type after being extracted from a Map object.

Need to maintain a contract for attribute keys. Since attributes are requested by string, clients need to remember the key strings used to identify attributes. Defining a key-attribute contract (discussed earlier in this pattern), can alleviate these dependencies.

Loss of strong typing/compile time checking. Using value objects, values passed by gets or sets were always of the correct type, any errors would be passed at compile time. Using Generic Attribute Access, attribute access must be managed by the client at runtime by casting objects to their correct type and associating the correct attribute type with the correct key.

Lack of support for entity bean relationships. AttributeAccess is just that, an interface for accessing the individual attributes of an entity bean. Support for marshalling state of multiple entity beans in one network call is out of scope for this pattern.

Many developers are uncomfortable with adding the dangers of weak typing and complexity of maintaining a key-value contract across the client and server. These developers should keep in mind that the Generic Attribute Access pattern basically has two components: Using the AttributeAccess interface to an entity bean’s attributes, and using a HashMap as an alternative to Value Objects for marshalling data across the network. Most of the benefits and complexities of this pattern arise due to the use of a HashMap as a value object alternative (need for a key-value contract between client and server, weak typing at the client, etc). Luckily, this pattern can be applied without using a HashMap between client and server. A Session Façade could be used that only has value objects as method parameters and return values, but internally operates on entity beans using the AttributeAccess interface. This Session Façade would convert HashMap data into strong-types value objects for the clients, but still benefit from the reuse and maintainability benefits of having a generic interface into the entity bean layer.

Overall, the Generic Attribute Access provides a domain-generic method of managing the state of entity bean objects, eliminating the bulky repetitive code associated with domain specific entity bean data access. Maintaining this level of abstraction requires extra care on part of the developers, but for large scale applications, the indirection may be necessary. Where simple domain model is involved the Value Object through a Session Façade is simple way to get the job done. Where the requirements are more complicated, developers should consider the Generic Attribute Access pattern.

All text and images are Copyright (2001

The Middleware Company. All rights reserved.

_1054236737.vsd

