C/S – Basic Concepts

Contents:
- 2-tier
 - Gartner Model
 - Winsberg’s Model
- Client/Server Balance
- Example
- 3-tier
- n-tier

The Gartner Model
- Became de facto reference model
- Recognizes 5 possible modes of distribution:
 - distributed presentation
 - remote presentation
 - distributed logic
 - remote data access
 - distributed database
- Assumes a 2-tier model and allocates functionality to client or server

Gartner Group Model

GM: distributed presentation
- Distributed presentation
 - only presentation management function shared between client and server
 - everything else remains on the server
 - screen-scraping (emulation-based) applications
 - GUI placed in front of existing character-based interface
 - first step in migration of legacy applications to a GUI

GM: remote presentation
- Remote presentation
 - presentation manager entirely on client
 - presentation logic, data logic and data manager on server
 - X Window System, Web applications where clients are Web browsers

GM: distributed logic
- Distributed logic:
 - application is split into presentation logic and data logic component
 - all presentation management activities on workstation
 - all data management activities on the server
Basic Concepts and Notation

- **Client**: user or program that wants to perform an operation over the system. To support a client, the system needs to have a **presentation layer** through which the user can submit operations and obtain a result.
- **Application logic**: establishes what operations can be performed and how they take place. Enforces business rules and establishes business processes.
- **Resource manager**: deals with storage, indexing, and retrieval of data necessary to support the application logic.

Winsberg’s Model

<table>
<thead>
<tr>
<th>Functional Area</th>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interface</td>
<td>Presentation Mgmt.</td>
<td>Drives display and graphical layout</td>
</tr>
<tr>
<td></td>
<td>Presentation Logic</td>
<td>Logic for screens, interaction w/users</td>
</tr>
<tr>
<td>Application Logic</td>
<td>Application Logic</td>
<td>Business logic and control flow</td>
</tr>
<tr>
<td>Data (or Resource)</td>
<td>Data Logic</td>
<td>Logical data access, consistency rules</td>
</tr>
<tr>
<td>Management</td>
<td>Database Mgmt.</td>
<td>Storage/retrieval/recovery</td>
</tr>
</tbody>
</table>

GM: remote data access

- Remote data access
 - database manager resides on server
 - presentation management and data logic reside on client
 - typical of client/server DBMSs (DB2, Oracle, Informix, etc.)

GM: Distributed Database

- Distributed Database
 - portions of the database reside on client
 - portions of the database reside on server
 - DBMS manages communication involved
 - limited implementation of full-fledged DDBMS functionality

Critique of the Gartner Model

- Distributed processing is not distributed data
 - first 4 levels describe distributed processing
 - fifth level describes distributed data
 - database distribution is orthogonal to processing distribution and is applicable to all 4 layers
 - distributed databases are transparent to the user, the other 4 layers are not

Winsberg’s Model – Func’ty
Client/Server Balance

Example - Fat Client
- Integrity and Consistency
 - Data type verification, ranges, etc. – integrity
 - e.g. Date of birth verification
 - Verify existence of data (according to relationships) – referential integrity
 - Department exists (association relationship)
 - Calculate the next employee number [Autonumber] (read last; add one; return it)
 - e.g. Employee number (unique)

Example - Fat Client
- Business Rules
 - They could be application-specific
 - Business rules scattered in many applications
 - Expressed in form of programming code
- Example:
 - Department Bonus (10% for all programmers)

Example - Fat Server
- Integrity and Consistency
 - Based on Stored Procedures
 - A unique version of the verification process is maintained at the server side
 - Autonumber is a Stored Procedure that controls uniqueness

Example - Fat Server
- Business Rules
 - Stored Procedures & Triggers
 - Business rules are located in one place (the server)
- Example:
 - Department Bonus (10% for all programmers)
 - Employee table (column dept) has a trigger that is executed on update or on insert. The trigger in fact executes a store procedure

2-tier, 3-tier, and Multi-tier
- Two-tier architectures are typical of
 - environments with few clients
 - homogeneous environments
 - closed environments (e.g. DBMS)
- Three-tier architectures are required for
 - scalability to thousands of clients
 - access to heterogeneous data sources
 - maintainability (update software on few app. servers instead of thousands of clients)
2-tier, 3-tier, and Multi-tier

- Multi-tier architectures result when
 - functionality is delegated to specialized servers (communication-, web-, application-, data-server)
 - mobile clients are considered (desktop client could act as server to mobile client)
 - considering distributed object systems in which every server can act as client to another server

Multi-tier: What Is Involved?

The Problem Space of C/S

- Three axes:
 - two-tier vs. three-tier vs. n-tier
 - transactional vs. informational
 - relational vs. object-oriented vs. semi-structured

The Problem Space of C/S

Distribution at the different layers

A game of boxes and arrows

- Each box represents a part of the system.
- Each arrow represents a connection between two parts of the system.
- The more boxes, the more modular the system: more opportunities for distribution and parallelism. This allows encapsulation, component based design, reuse.
- The more boxes, the more arrows: more sessions (connections) need to be maintained, more coordination is necessary. The system becomes more complex to monitor and manage.
- The more boxes, the greater the number of context switches and intermediate steps to go through before one gets to the data. Performance suffers considerably.
- System designers try to balance the capacity of the computers involved and the advantages and disadvantages of multiple layers.
Client/Server Balance

- Separation between client and application server is never clean-cut
 - There's no recipe
 - But experiences!
- All depends on the kind of application
- It also depends on the hardware (client and server)
- Cached data are needed when part of the application logic is located on the client
 - Checking of consistency constraints on client side at data entry time
- Depends on the kind of interaction