Should Novice System Developers
use Use Cases to Develop Core Requirements ?

David Naney1, Andrés Díaz Pace2, Henry Mophasa1, Albert Ward1 and Mohamed Fayad1
1Computer Science and Engineering Department,

University of Nebraska, Lincoln (USA)

108 Ferguson Hall, P.O.Box 880 115, Lincoln, NE 68588-0115

Email: { dnaney, hmophasa , award , fayad }@cse.unl.edu

2ISISTAN Research Institute, Facultad de Ciencias Exactas,

Universidad Nacional del Centro de la Provincia de Buenos Aires

Paraje Arroyo Seco, 7000 Tandil (Argentina)

Email: adiaz@exa.unicen.edu.ar

Abstract. Use cases represents a typical interaction between users and software system, and are used to capture the high-level user functional requirements. Although use cases seem to be a useful technique for requirements in large projects, an incorrect requirement gathering can lead to defective software artifacts. Moreover, requirement evolution can produce serious maintenance problems. Software stability takes on the problem of software obsolescence, trying to design the system on the basis of the components that will remain relatively stable over time. The introduction of these concepts in use case models can help to provide a more structured manner to deal with requirements, even for novice developers.

1. Introduction

It seems that a great deal of the time, problems with software development are not caused by technical problems. Instead, they are caused by incorrect requirements gathering [Korson99]. To avoid this problem, a new method of requirements gathering, utilizing the tenets of software stability [Fayad00], was used in the Philips New York Project. Software stability takes on the problem of software obsolescence, a problem discussed in detail by experts in the field over the course of many years. The heart of the problem is, that even though software does not deteriorate physically, it does wear out. This breakdown is caused by changes in the needs that the software is supposed to meet. When one of the needs change, most of the time, with current software practices, the whole system must be redesigned. This is wasteful, expensive and time consuming. According to the axioms put forth by the proponents of software stability, if a set of characteristics that make up the core functionality of a system can be located, and designed as the core of the system, most, and if done correctly, all changes will occur in the periphery, making changes easy to incorporate. In order for this to happen, “Enduring Business Themes”, “Business Objects” and “Industrial Objects” have to be found.

The paper describes the experience collected gathering requirements in the context of the Philips New York Project about distributed health care systems [NYCore99, NYArchitecture99]. Specifically, it shows a new technique to deal with use cases, extending the basic model stated by UML Unified Process [UML99] methodology with other features such as: software stability, roles, type-oriented programming and CRC cards. The goal is to provide a more structured manner to manage requirements, enhancing the development of good software artifacts from the core requirements, even for novice developers.

The article is organized in five sections. The first one gives background information about the use case model as stated in the Unified Process methodology, and situates our work in the context of the Philips New York Project. Then, a use case template is showed, and it is illustrated with an example. The following sections consider in detail issues like software stability, roles, type-oriented programming and aspects, in relationship with our use case approach. After that, we discuss some related approaches to deal with use cases in requirement gathering. Finally, the conclusions of our experience are presented.

2. Background information

2.1. Gathering requirements with use Cases

The utilization of scenarios (or use cases) to understand requirements it is not a novel idea, however, these scenarios were treated quite informally until Jacobson’s work raised the use case notion [Jacobson92]. To date, a use case represents a typical interaction between users and a software system. Recently, use cases have been included in the UML-based Unified Process methodology [Jacobson99], as a way to capture the high-level user functional requirements of a system. A simple use case recipe can be defined with the following steps:

Step 1. Indentify the who is going to be using the system directly. These are the actors.

Step 2. Pick one of those actors.

Step 3. Define what that actor wants to do with the sytstem. Each of these things that the actor wants to do with the system become a use case.

Step 4. For each of those use cases decide on the most usual course when that actor is using the system. What normally happens. This is the basic course.

Step 5. Describe that basic course in the description for the use case.

Step 6. Once you have stated the basic course, consider now the alternates and add those as extending use cases.

Step 7. Review each use case descriptions against the descriptions of the other use cases. Notice any glaring commonality? Extract those out.

Step 8. Repeat steps 2-7 for each actor.

Although this naive procedure seems to be straightforward to achieve, any developer involved in middle-scale or large-scale projects knows that the picture is a bit more complicated. At the beginning, you can capture the use case set by talking to your typical users and discussing the various things they might want to do with the system. Besides that, there are other issues to consider:

· How can we be sure that we captured all of the user’s viewpoints about the system?

· What if some of the actors do not really understand the true business needs?

· How can we avoid an explosion of use cases?

· What is the smoothest way to accomplish the transition between use cases based analysis and system design?
We believe that the technique proposed (and further applied in the Philips New York Project) offers some guidance in this sense, and provides a well-defined practice to alleviate development efforts during requirement analysis.

2.2. The Philips New York Project

“This project reminds me of trying to nail Jell-O to a wall”. This was one of the more memorable comments heard during the first few meetings of the design team developing the core requirements for the Person IDentification Service module (PIDS for short) of the Philips New York Project. The Philips New York Project was a fledgling effort, performed by novice systems programmers, tasked with developing a proof of concept by using software stability as detailed in [Fayad 00]. The goal of this project was to develop a framework implementation of the concepts from CorbaMed [CorbaMed99], embodying the aforementioned principles of software stability. The CorbaMed Task Force [Jagannathan98] is OMG's effort in the healthcare domain. CorbaMed is actively creating interoperable interface specifications for distributed object services (e.g. Patient Identification Service, Lexicon Query Service, Clinical Observations Access Service), which will be made commercially available from various vendors. It has a very vigorous following and is developing service specifications in numerous areas in healthcare, leveraging existing standards such as HL7, DICOM and others. The focus of CorbaMed is on interoperable services, leveraging the strength of CORBA. A great deal of time was spent learning the reasons behind the standards, and understanding the overall reasons for the project.

The system comprises four modules;

· Person Identification Service (PIDS): The PIDS package organizes person ID management functionality to meet healthcare needs. It is designed to: (1) support both the assignment of IDs within a particular ID Domain and the correlation of IDs among multiple ID Domains; (2) support searching and matching of people in both attended-interactive and message-driven-unattended modes, independent of matching algorithm; and (3) permit PIDS implementations to protect person confidentiality under the broadest variety of confidentiality policies and security mechanisms

· Electronic Healthcare Claims Facility (EHCF): This package deals with administrative activities such as enrolling beneficiaries in a health plan, paying health insurance premiums, checking eligibility, obtaining authorization for specialist referrals and filing reimbursement claims. The adoption of uniform national standards for electronic processing of insurance claims and related transactions can improve information flow and help generate significant savings.
· Pharmacy Interaction Facility (PIF): This module provides a common communication interface for prescribers and dispensers to communicate patient prescription information between each other.

· Clinical Image Access Service (CIAS): The main aim of this package is to develop a read-only image access system that will access image files and limited meta-data for non-diagnostic viewing by general clinicians. CIAS should allow image scaling and windowing and its user interface should be very user friendly. CIAS should also allow images (and meta-data) to be stored in most popular file formats. In essence, CIAS should hide the complexities of a powerful and intricate system and yet support the viewing of patient records over slow networks.

The technical issues associated with the large-scale healthcare systems are representative of a challenging class of research problems for managing the high volume of event flow throughout a complex organization. Primary among these challenges is the need to automate efficient mechanisms for monitoring, classifying, controlling, and coordinating events to increase the availability and accessibility of personnel. Given the broad scope and geographical separation of healthcare system facilities, the distributed information system must provide flexible and scalable system-wide support for event-based notification to ensure key human resources are deployed, notified, and managed effectively. In a health care delivery system, the speed and appropriateness of decision making is critical.

As to the problem that was at hand for the group of developers, once some understanding for the standard was developed, it was time to jump in and try to find some core requirements. Each module contained its own set of requirements, so each group worked, more or less, independently to discover these requirements for their own module. The group working on the PIDS module began with a series of informal meetings between the three members of the group. It was during these preliminary meetings that the lament mentioned above was heard. The group had no idea where to start. Even though much time had been spent studying both the CorbaMed standard and the accepted standard for the PIDS module, these documents proved to be of little use in this project.

The CorbaMed standard for the PIDS module caused a great deal of confusion for the group. It was difficult, at first, to understand that the task was not to implement the standard as it stood, but to create a new implementation that would work as the proof of concept for software stability. As such, most of the diagrams developed previously for the standard were not assets. The group had to disregard most of the work that had already been accomplished and start a new. Once over the hurdle of understanding what the project was to accomplish,

3. Our use case model

The first step is the development of use cases. According to [Korson99], good software engineering is not use case driven. However, use cases do provide one of the easiest methods for novices to begin to develop system requirements. The use case model is about describing what our system will do at a high level and with a user focus for the purpose of scoping the project and giving the application some structure. Use cases are not a functional decomposition model, and they do not require how the system will accomplish its functionality. In this project, the use cases were developed using a group approach. Our use case template delineates the different parts of the use case, making it easier to see the different parts of each use case (see Figure 1).

Figure 1. Use case template

To complete the use case template, we start discovering the main actors involved in the scenario and the different roles they can play during the interactions. This distinction helps to maintain a clear separation of the different views that actors can offer to the system. Then, the CRC technique is applied (see Figure 2) to outline the main entities and their responsibilities (i.e. types and their interfaces). Note that in this step we are not specifying specific implementations for types. At the same time we start to think about possible Enduring Business Themes, Business Objects and Industrial Objects hidden in the situation, that are going to ensure software stability. After that, we add the classes that are going to support our types (a type can be implemented by one or more classes). The last step comprises define the main flow of actions between the roles and the system, and some alternative courses as well.

Figure 2. Process of the CRC technique

Using the system developed for this project, use cases can be used by novice system designers, with a distinct lessening of the problems that current use case systems can produce. By using Enduring Business Themes, Business Objects and Industrial Objects, along with the Use Case template, the gathering of requirements is handled in a very structured manner, that enhances the development of good objects from the core requirements.

A group of Use Cases for each module was developed using a group approach and then thoroughly analyzed to develop as complete a set of requirements, as possible. This set of requirements was then returned to the customer for further input. Using this iterative process, the set of requirements was refined. When the set of requirements are satisfactory to the customer and the development team, the hard work involved in using this method begins. It is now time to discover the Enduring Business Themes. This is probably the most difficult part of the process, as the EBTs are not explicitly spelled out in the use cases, but must be determined through analysis of the use case.

Figure 3. Use case example

3.1. An Example

This example was extracted from the from the Philips NY Core Requirements document [NYCore99] (see Figure 3). The use case shows the interaction between a Medical Service Provider and a Patient, to determine if the patient fulfills the conditions required to be eligible for a given healthcare service.

3.2. Software stability

Stability was a key factor in the project. This issue was under consideration through out the analysis and design of the system. To accomplish stability the concepts of Enduring Business Theme (EBT), Business Object (BO) and Industrial Object (IO) were employed [Fayad00]. In identifying the Enduring Business Themes for this system, an attempt was made to find the elements in the scope of the system that are not altered in time and to then design the system around these elements. Business Objects are those objects in the system that will remain ‘externally stable’ through the life of the system. The objects in the system that will not remain stable over time were those treated as Industrial Objects. Table 1 shows some guidelines to identify these concepts.

Enduring Business Themes
Business Objects
Industrial Objects

Intuition
Intuition
Intuition and Reading
Reading Only

Stability Over Time
Stable Over Time
Externally Stable
Unstable

Adaptability
Adaptable Without Change
Adaptable Through Internal Change
Not Necessarily Adaptable

Essentiality
Essential
Essential
Replaceable

Commonality to the Domain
Core
Core
Peripheral

Tangibility
Conceptual
Semi-tangible
Tangible

Explicitness
Implicit
Sometimes explicit
Explicit

Table 1. A summary of the identification criteria for Enduring Business Themes, Business Objects, and Industrial Objects.

Some examples of EBTs encountered in the project were the following (for more details see Figure 4):

· Identity: It was considered as Enduring Business Theme in the PIDS package It follows from experience that in a system of this nature, Identity has been of key importance throughout the use of the system. Moreover, where health care is concerned, a rigorous treatment of the identity issue would waylay any future problems in the system.

· Security: It is necessary to permit PIDS implementations to protect person confidentiality under a wide variety of confidentiality policies and security mechanisms. For this reason, Security was identified as another Enduring Business Theme in this package. A reliable security implementation will be of great importance to anyone implementing or using this framework.

· Complete Medical History: It was also viewed as an Enduring Theme in the system. For a medical package, it was concluded that medical history would be a long lasting requirement for the system to be able to fulfill. For similar reasons, Diagnosis and Customer Service were identified as business themes in this package.

Figure 4. Some EBTs, BOs and IOs, in the PIDS and EHCF modules

3.3. Roles

When we try to define the actors involved in a use case model, usually this notion is not enough, because we find that an actor (representing user types or categories) can offer several specific views to the system during its interactions with it. A clearer approach to deal with this situation consists of separating these views in roles. A role is a client-specific view of an object, playing that role. One object may play several roles, and the same role can be played by different objects. An instance of a core concept, belonging to the tutoring domain, may play several roles. For example, 'teacher' could play the role of 'instructor'. In the grader domain, 'customer' could play the role of ‘examiner’ or ‘grader”. These three roles could also be played by the same teacher, in real life as well as in the system model. Figure 5 illustrates actors and roles in our use case example.

When it comes to implementation, the Role Object pattern [Bäumer97] can help to adapt an object to different client’s need through transparently attached role objects. By representing roles as individual objects, different contexts are kept separate and system configuration is simplified. An object typically plays several roles that are described by role types, so that the class of an object composes several role types.

Figure 5. Actors and roles in a use case

3.4. Type oriented programming

A type names an interface, and defines a collection of operations, services or requests in that interface. A type is an external view of the visible behavior of some set of objects. Any object that provides that behavior is a member of that type. The interesting thing about types, is that they do not specify any implementation. A type model is an abstraction of the state of any possible implementation of that type, and specifies the effects of the operations in terms of that model [D’Souza99]. Following this way of thinking, the developer can implement any class (or set of classes) for a given type, making its own implementation decisions.

The type model relies on two premises: (1) require no more, and (2) promise no less. The first statement means that a class should not impose requirements in the client code beyond those defined by the type, and a class must check for and respond in the way defined by type when requirements are not satisfied by the client code. The second one states that a class must fully support the operations as defined by the type if the code client satisfies the requirements. Using these two premises, we address the substitutability principle, allowing a class to be substituted by another.

Type
Interfaces
Classes

Request
· Create

· Set Sender

· Set Receiver

· Add Contents

· Review Contents

· Send
· Enrollee request

· Discontinue Request

· Information Request

· Payment Request

Response
· Create

· Set Sender

· Set Receiver

· Add Contents

· Review Contents

· Send
· Enrollment Response.

· Discontinue Response.

· Information Response.

· Claim Response.

· Approval of discontinuation

· Authorization notification

Table 2. Types, interfaces and classes in our example

In the use case model, the types often represent the interfaces used by the roles the actors play in the scenario. The types we choose encapsulate the future design of the system. Table 2 summarizes the types used in our example, their interfaces, and how these types are implemented using different classes.

3.5. Aspects

To date how aspects appear in use case model, let give a short introduction to the aspect notion. The primary idea of organizing software systems has been based on software decomposition, where a problem is broken down into subproblems that can be addressed relatively independently. Consequently, current languages and paradigms support a number of modular representations to accomplish these goals. At the same time, many systems have properties that do no necessarily align with the functional components and can not be localized to modular units (optimization, exception handling, tracing, synchronization, scheduling, and so on). Aspects are defined as properties that cut across groups of functional components [Kickzales97, Lopes97]. While these aspects can be though about and analyzed relatively separately of the basic functionality, at the implementation level they must be combined together. The aspect-oriented paradigm should be considered a discipline for general separation of concerns in object-oriented domains, rather than confine itself to a given range of applications.

When it comes to use case models, we can find these same aspects crossing cut across the classes of our use case template. In fact, some Enduring Business Themes can be considered as aspects. Concepts such as Authorization and Eligibility in the EHCF module cross cut the functional units, and are often inadequate to be tackled with traditional object-oriented approaches. Although aspects were not considered in the Philips New York Project, we believe that they play an important role in the system.

4. Related work

The first work about use cases was from Jacobson [Jacobson92], who provides a methodology (called Objectory) where external stakeholders, end users and customers cooperatively determine what the system will do and how they will use it. This is done through use scenarios, expressed in a use case model. The functional requirements are captures through the use case analysis. The use cases are involved in several phases of the development, including analysis, design, validation and testing. The use cases in Objectory are initiated by actors, and describe the flow of events that these actors are involved in. An actor represents a category or a type of user rather than a physical user, and its equivalent to a role in our model. In the requirement analysis, the use cases are usually described in text, with a clear flow of events to follow. Exceptional or additional flow of events (using the keywords “extends” and “uses” respectively) could be added. The use case documentation includes also some pictures of the user interface and interaction diagrams. But this model does not involve a clear transition to the design phase yet. It is possible for an actor to inherit one or more properties from other actors, and the use cases could be viewed as concrete or abstract. These last concepts are quite difficult to understand in the model, and they often generate confusion in the developers. Most of the following approaches present variations to the Jacobson’s work.

Cockburn [Cockburn97] takes the Jacobson’s work about use cases, and defines a way of structuring use cases with goals. His approach is based in build requirements, using use cases based on consistent prose, where each use case may have multiple scenarios, and the collection of use cases is presented in a semi-formal structure. The goals provide a way to represent non-functional requirements. A use case is a collection of possible scenarios between they system under discussion and external actors, characterized by showing how the goals of the primary actors might be delivered or might fail. An action connects one actor’s goal with another’s responsibility. A primary actor is one having a goal requiring the assistance of the system. A secondary actor is one from which the system needs assistance to satisfy the goal. Each scenario is described by a sequence of interactions showing the past or a definite future with conditions stated. The scenarios and use cases go until a goal success or abandonment. Each use case is documented with the following items: primary actors, goal, and scenarios used; and each scenario includes: primary actor, goal, conditions under the scenario occurs and scenario result (goal delivery or failure). An approach to control scenario explosion is also proposed, using three techniques: subordinate use cases (prescribing a recursive structure for use cases and scenarios), extensions (alternative courses or recovery scenarios) and variations (dealing with different format for the inputs and outputs of the use cases). These three levels of description are not very easy to understand for untrained developers. In addition, this approach does not differentiate between actors and roles.

Change cases [Ecklund96] are intended to capture anticipated future changes to a design in order to increase its robustness to handle change. Basically, change cases are use cases that have links to affect use cases and to change requirements for traceability purposes. They consider four types of changes: market demands, business requirements change, legislative and regulatory change, and imaginative users. This approach is the opposite to software stability.

An approach to formalize use cases introduces an unambiguous syntax through message sequence charts [Andersson97]. It utilizes three levels for the use case model: the system level, the structure level and the basic level. The system level describes the functional view of the system and corresponds directly with the Objectory use case model. The “uses” constructor is replaces by an extension to include associations to reuse structure blocks, which identify an event sequence that is reused in several use cases. The structure level describes the use case behavior without going into detail by utilizing a hierarchical view that allows information hiding. Informal text is used to define the actors, start conditions, and constant declarations. The basic level describes the detailed interactions between the system and the actors, essentially sequence diagrams. Although message sequence charts can be viewed as a way of describing use case interactions, it is not clear how to get a general design from the diagrams.

In the Catalysis methodology, a collaboration refinement is defined as a relationship between two collaborations where one refines the other [D’Souza99]. This claim is supported by a mapping of the refined model and actions to the abstract model and actions. A collaboration entails two aspects: the first aspect deals with what sequences of finer actions induce each abstract action (specified through statecharts, object interaction diagrams, or pre and post conditions specifications), the second one deals with more detailed type models of each participant. Many interesting object-oriented implementation frameworks consist of a set of compatible types being plugged in to define the specialization. One of the features considered in Catalysis are the concepts of types and classes.

Other ideas about collaboration-based design, suggest that use cases and responsibilities represent collaborations [VanHilst96]. The approach utilizes role components, which are implemented as source code entities through class templates designed in stylized way. Different combinations of roles can be generated through templates without changing the role definitions themselves. Object interaction diagrams show operations and roles, but not how they are composed in a single class. On critical aspect of the approach is the need to determine the order to compose the roles. Some collaborations can extend other collaborations.

The Responsibility-Driven Design approach [Wirfs-Brock90] is a method which models an application in terms of classes, their responsibilities and their collaborations. Initially the system’s objects and classes are identified, developed from the requirements specification. The system’s responsibilities are analyzed and allocated to the classes of the system. To fulfill these responsibilities, the classes need to collaborate with other classes. This gives a preliminary design which is further explored. The responsibilities are refined and grouped into contracts, which define a set of requests that the objects of the class can support. The method uses CRC (Class, Responsibilities and Collaborations) cards. This method provides informal techniques and guidelines to elaborate and appropriate design, but the strategy for finding classes and their properties relies strongly on the skills of the designers.

More detailed information about different approaches based on use cases can be founded in [Hurlbut97].

5. Conclusions

There were interesting lessons learned in completing this project. Our experience with the Philips New York Project was encouraging in the sense that the use case template proposed for requirements gathering proved its benefits to help novice developers to tackle large projects. After the initial setup, where the team spent a considerable effort to understand the CorbaMed specification, the guidelines presented in the template permitted a quite smooth transition to the design of the different modules. On the other hand, since the overall project was so large, the requirements for the system as a whole were not developed, and the individual modules were not combined to create an overall CorbaMed framework.

This project showed, again, that requirement analysis is one of the core factors to be successful in software engineering, and moreover, that software stability plays an important role in the field. Although more research and sound methodologies in the area are needed, we believe that a traditional use case model in combination with roles, software stability concepts (EBTs, BO, and IO), type-oriented programming and CRC cards is a very reasonable approach to deal with the ever-changing client needs.

References

[Wirfs-Brock90]
Wirfs-Brock, R., Wilkerson, B. and Wiener, L.: Designing Object-Oriented Software, Prentice Hall, Englewood Cliffs, New York, 1990.

[Jacobson92]
Jacobson, I., Christenson, M., Jonsson, P., and Overgaard, G.: Object-oriented software engineering: a use case driven approach. New York, ACM Press; Wokingham, Eng.; Reading, Mass. Addison-Wesley publications. 1992.

[Ecklund96]
Eckclund, E., Delcambre, L., and Freiling, M.: Change Cases: Use cases that Identify Future Requirements, OOPSLA: The First Eleven Years Conference Proceedings 1986-1996. ACM Press, New York, 1997.

[VanHilst96]
VanHilst, M., and Notkin, D.: Using role components to implement collaboration based design, OOPSLA: The First Eleven Years Conference Proceedings 1986-1996. ACM Press, New York, 1997.

[Andersson97]
Andersson, M., and Bergstrand, J.: Formalizing Use Cases with Message Sequence Charts, Master Thesis, Department of Communication Systems at Lund Institute of Technology. 1997

[Bäumer97]
Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. Role Object Pattern. In Proceedings of the 1997 Conference on Pattern Languages of Programs (PLoP '97). Technical Report WUCS-97-34. Washington University Dept. of Computer Science, 1997.

[Cockburn97]
Cockburn, A.: Structuring Use cases with goals. JOOP/ROAD 10(5) September 1997 and 10 (7) November 1997. 1997

[Hurlbut97]
Hurlbut, R.: A Survey of Approaches for Describing and Formalizing Use Cases. Technical Report: XPT-TR-97-03, Expertech, Ltd., 1997.

[Kickzales97]
Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, J., and Irwin, J.: Aspect-Oriented Programming. Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Finlad. Springer-Verlag LNCS 1241. June 1997.

[Lopes97]
Videira Lopez, C.: D, a language framework for distributed programming. Ph.D. Thesis. Graduate School of the College of Computer Science. Norheastern University. Boston, Massachusetts, 1997.

[Jagannathan98]
Jagannathan, V., Wreder, J., Glicksman, B., and alSafadi, Y.: Objects in Healthcare – focus on standards. Draft Version of the paper to appear in ACM Standards View, Summer 1998.

[CorbaMed99]

CorbaMed: Healthcare Domain Specifications. 1999

[D’Souza99]
D’Souza, D., and Wills, A.: Objects, Components, and Frameworks with UML: The Catalysis Approach. Object Technology Series. Addison-Wesley. 1999.

[Jacobson99]
Jacobson, I., Booch, G., and Rumbaugh, J.: The Unified Software Development Process. Object Technology Series. Addison-Wesley. 1999.

[Korson99]
Korson, T.: Constructing useful Use Cases, Component Strategies (formerly Object Magazine) Column, March 1999.

[NYCore99]
Fayad, M., Yassin, A., and Naney, D.: Philips New York Project, Core requirements. Technical Report TRCS-99-028, Department of Computer Science, University of Nevada. April 1999.

[NYCore99]
Fayad, M., Yassin, A., and Naney, D.: Philips New York Project, Core requirements. Technical Report TRCS-99-029, Department of Computer Science, University of Nevada. July 1999.

[UML99]

Unified Modeling Language, Version 1.3, http://www.rational.com/uml

[Fayad00]
Fayad, M.: Software Stability Technique, Philips Research. A patent is submitted, March 2000.

PACKAGE: 	[Description (an overview of the package)]

USE CASES:

	[A package will have one or more Use Cases]

Use Case No.: [1.1]

Use Case Title: [A descriptive title]

	[e.g. adding a new patient, or adding a new role]

Actors: _______, _______, _______, _______.

[Any users of the Use Case, ex. human, machine, other systems or subsystems]

Roles: _______, _______, _______, _______.

	[There is a different role per actor in every use case]

Types: _______, _______, _______, _______.

	[Each role defines an interface named by one or more types]

Classes: _______, _______, _______, _______.

	[Types are implemented using several classes]

Enduring Business Themes (EBT): 	_______, _______, _______, _______.

Business Objects (BO): 			_______, _______, _______, _______.

Industrial Objects (IO): 			_______, _______, _______, _______.

[This represents a clear classification of all the classes within the use case description]

Description of the Use Case:

[Describes the data flow and the logic flow of the Use Case, including the main course and also alternative courses]

Package: Electronic Healthcare Claims Facility

Use Case No.: 2.10.1

Use Case Title: Checking Eligibility for a Service

Actors: Medical Service Provider, Patient.

Roles: Medical Service Provider = Information Provider, Patient = Information Requester.

Types: Request, Response.

Classes: Request, Response, Patient record.

Enduring Business Themes (EBT): Authorization, and Eligibility.

Business Objects (BO): Information Provider, Information Requester.

Industrial Objects (IO): Medical service data, Patient record, Request, and System response.

Description of the Use Case:

The medical service provider sends a request that includes the patient number and the service description. These are used for checking eligibility to the system.

The system checks the eligibility of this request in the patient record and which medical services are permitted for this patient.

The system sends a response (Either a denial or authorization of the service for this patient) to the medical facility.

Electronic HealthCare Claims Facility (EHCF) Module

IOs

+ Refund claim

+ Information request

+ Request

. . .

BOs

+ Medical Service Provider Data

+ Medical Service Provider Record

+ Patient Data

EBTs

+ Health

+ Authorization

+ Insurance

+ Eligibility

Person Identification Service (PIDS) Module

IOs

+ Candidate List

+ Person Traits

+ Traits Gatekeeper

. . .

BOs

+ IDSession

+ Data Manager

+ Profile Access

+ Customer Service

EBTs

+ Identity

+ Security

+ Diagnosis

+ Customer Service

+ Complete Medical History

. . .

. . .

Identify collaborations

Our use case

YY

XX

Information

Requester

Information

Provider

Medical

Service

Provider

Patient

Assign responsibilities

Identify classes and responsibilities

Actor

Role

1
1

