Quiz #6: Formal methods

Formal methods are the best way to specify the framework requirements.

Formal methods are a necessary specification mechanism in middle or large frameworks, in order to provide a more accurate description of the framework purpose (functionality and extension points) to users and developers. However, I think that formal methods need to be complemented with other approaches, like semi-formal hook descriptions or usage examples, for example. Other drawback is that usually formal specifications are quite difficult to understand for novice users, and this fact can restrict framework comprehension. In addition, it is still not clear how formal methods deal with issues such as: properly framework usage, or non-functional requirements in frameworks.

Should we have a course on formal methods in our J.D. Edwards Program?

According to the mission statement of the J.D. Edwards Program: “The purpose of the J.D. Edwards Honors Program in Computer Science and Management is to produce top quality graduates who combine business knowledge and computing fundamentals for enterprise information and software systems. Graduates will be professionals who understand the multiple levels of new information systems, and who become the technology sector's innovators, product developers, entrepreneurs, and chief information officers …”, I think that formal methods are a required topic in this program. Nowadays, most of the projects involving mission-critical software need to rely in some kind of formalism. Personally, I believe that items such as: first-order predicate calculus, Z specifications, theory of automata and some notions about modal logics should be included in a course about formal methods.

Define Validation and Verification. Why are they important?

Validation means that the system requirements must be accurately understood, it corresponds with the “build the right thing” statement. On the other hand, verification …

What are the differences between abstract classes and concrete classes in C++ and Java?

In Java there is a qualifier “abstract” to explicitly indicate if a class or a method is abstract. Any class with one of its methods abstract requires the abstract qualifier in the class definition (the compiler checks this situation). Moreover, you can define classes with all their methods abstract, using the concept of interfaces.

In C++ all the classes are supposed to be concrete, but you can define virtual methods (abstract methods) requiring a further implementation in subclasses, this fact turns the target class into abstract. There is no way to explicitly specify in the code whether or not a class is abstract. The concept of interfaces is not supported, but you can emulate a Java interface with a class where all its methods are declared as virtual.

