Quiz #4: Problem Set “Reusing Hooks”

CSCE496/896 Object-Oriented Enterprise & Application Frameworks

Andrés Díaz Pace – March, 2000

1). Pick any Unix client-server pair (for example, ftp) and describe how you would it using CSF.

The following diagram shows the main components and the data flow involved in an FTP (File Transfer Protocol) application using the CSF framework. More details about each of the components are described below.

· An FTP is a program to move files from one computer to another. FTP opens an interactive connection to a remote host (a ftp site), and next you locate the file you need and go to the directory that contains it, finally you “get” the file and it is copied to the current directory in your local computer. Ftp can be also used to send files onto a server. You can need a user account to be logged in the server, but sometimes the server can provide some anonymous ftp.

· The client side application is based on an AppletMailServer and the server side is based on an AppletServerMailServer (both provided by CSF), because the ftp service needs to implement a connection-oriented service. This facility is supported via the Choose MailServer hook.

· Data Message represents the information about directory tree in the server side that is showed to the user in the client side (see Data Proxy and Data Master). It uses the Data objects (for data that needs to be sent across a network). This facility is supported via the New DataMaster/DataProxy hook.

· Control Message represents information of control such as commands get, set, connect, disconnect and cd. It uses the Data objects. This facility is supported via the New Data hook.

· File Message represents data frames of a given transferred file. It uses the Data objects. This facility is supported via the New Data hook.

· Both DataProxy and DataMaster are used to show to the client user (probably with some kind of graphical interface) information about the file system in the server side. This facility is supported via the New DataProxy/DataMaster hook.

· Control Inbox receives control messages from the server or the client side. The same is for File Inbox, but it stores incoming frames of a given transferred file. Both of them are supported via the New Inbox hook.

· Control Outbox is used to send control messages from the server or the client side. The same is for File Outbox, but it transmits frames of a given file. Both of them are supported via the New Outbox hook.

· All the handlers registered with both inboxes and outboxes provide specific processing for the incoming or outgoing messages (either control information or file frames). They are supported via the Handle Message hook.

· Although it is not presented in the diagrama, messages are sent from the client side to the server side and conversely, using the Send Message hook.

Note: The ftp application (ftpclient and ftpserver) uses some CommAwareObject components to manage message flow, control of the handlers, links with the real file system, and commands. This is supported via the New CommAwareObject hook, but the user should provide the control structure to deal with these parts of the application. Loggin aspects are not showed in the diagram and should also be specified by the application developers.

2). Evaluate the strengths and weakness of building an application using a framework such as CSF as opposed to building it without the framework. Evaluate from the point of view of both an application developer and a manager.

Application developer

With CSF
Without CSF

(+) Reusability and time saving.
(+) The developer is free to define and implement his/her own design for a given system.

(+) A conceptual model easy to learn, to program client-server application using the framework.
(-) More development efforts.

(-) The “email metaphor” could be not suitable for some applications.
(+-) The developer can include commercial products into the applications more easily.

(+-) CSF can be a not good enough support to build applications requiring specific needs such as optimization, performance or security.

Manager

With CSF
Without CSF

(+) The CSF model is easy to understand and use.
(+) Better management tools if you use some comercial products.

(+-) The manager can not apply experiences with other commercial products.
(+-) Need to learn the developed application or different commercial products.

(+) Configuration capabilities.

(-) Performance, security, and management tools can be potential drawbacks.

3). Pick a framework (for example, MFC, Delphi, HotDraw, Java AWT) and give examples of several hooks of different types.

The following list describes some of the hooks provided by the Java AWT framework (according with the Sun’s AWT Tutorial):

1. Defining your custom LayourManager.

Method of Adaptation: adding a feature.

Level of Support: supported pattern.

· “ To create a custom layout manager, you must create a class that implements the LayoutManager interface. LayoutManager requires its adherents to implement five methods:

· void addLayoutComponent(String, Component). Called only by the Container add(String, Component) method. Layout managers that don't require that their components have names generally do nothing in this method.

· void removeLayoutComponent(Component). Called by the Container remove and removeAll methods. Layout managers that don't require that their components have names generally do nothing in this method, since they can query the container for its components using the Container getComponents method.

· Dimension preferredLayoutSize(Container). Called by the Container getPreferredSize method, which is itself called under a variety of circumstances. This method should calculate and return the ideal size of the parent, assuming that the components it contains will be at or above their preferred sizes. This method must take into account the parent's internal borders, which are returned by the Container getInsets method.

· Dimension minimumLayoutSize(Container). Called by the Container getMinimumSize method, which is itself called under a variety of circumstances. This method should calculate and return the minimum size of the parent, assuming that the components it contains will be at or above their minimum sizes. This method must take into account the parent's internal borders, which are returned by the Container getInsets method.

· void layoutContainer(Container). Called when the container is first displayed, and each time its size changes. A layout manager's layoutContainer method doesn't actually draw components. It simply invokes each component's resize, move, and reshape methods to set the component's size and position. This method must take into account the parent's internal borders, which are returned by the Container getInsets method. You can't assume that the preferredLayoutSize or minimumLayoutSize method will be called before layoutContainer is called.

Besides implementing the five methods required by LayoutManager, layout managers generally implement at least one public constructor and the toString method. Instead of implementing LayoutManager directly, some layout managers implement the LayoutManager2 interface. The LayoutManager2 interface extends LayoutManager by adding methods that take components' maximum sizes and alignments into account, a more general form of the addLayoutComponent method, and a method that tells the layout manager to discard any cached layout information. ”

2. Overriding the paint() method in a Component.

Method of Adaptation: augmenting a feature.

Level of Support: supported pattern.

“ Programs can draw only when the AWT tells them to. The reason is that each occurrence of a Component drawing itself must execute without interruption. A Component can use the repaint() method to request to be scheduled for drawing. The AWT requests that a Component draw itself by invoking the Component's update() method. The default (Component) implementation of the update() method simply clears the Component's background (drawing a rectangle over the component's clipping area in the Component's background color) and then calling the Component's paint() method. The default implementation of the paint() method does nothing.

The only argument to the paint() and update() methods is a Graphics object that represents the context in which the Component can perform its drawing. The simplest way for a Component to draw itself is to put drawing code in its paint() method. This means that when the AWT makes a drawing request (by calling the Component's update() method, which is implemented as described above), the Component's entire area is cleared and then its paint() method is called. For programs that don't repaint themselves often, the performance of this scheme is fine. The paint() and update() methods must execute very quickly! Otherwise, they'll destroy the perceived performance of your program. ”

3. Double-buffering technique.

Method of Adaptation: replacing a feature.

Level of Support: supported pattern.

“ Programs that repaint themselves often can use two techniques to improve their performance: implementing both update() and paint(), and using double buffering. This technique involves performing multiple graphics operations on an undisplayed graphics buffer, and then displaying the resulting image onscreen. Double buffering prevents incomplete images from being drawn to the screen. A code example is provided with the sections you should modify to implement this mechanism (basically, update() and create an image buffer). ”

4. Lightweight components.

Method of Adaptation: adding a feature.

Level of Support: open-ended.

“ The Lightweight UI Framework provide the ability to now directly extend the java.awt.Component and java.awt.Container classes in order to create components which do not have native opaque windows associated with them. These lightweight components and containers fit right into the existing AWT models, such as painting, layout, and events, and as such, require no special handling or additional APIs. Existing subclasses of Canvas and Panel can be easily migrated to lightweight versions by simply changing their superclass appropriately. Lightweight components can be freely mixed with existing heavyweight components. This means that lightweight components can be made direct children of heavyweight containers, heavyweight components can be made direct children of lightweight containers, and heavyweight and lightweights can be mixed within containers (with the one caveat that the heavyweight sibling will always be "on top" if it overlaps with a lightweight, regardless of the specified z-order). There are more detailed explanations and code examples in the AWT documentation. ”

5. Implementing event listeners.

Method of Adaptation: enabling a feature.

Level of Support: supported pattern.

· “ In the AWT event model, events are generated by event sources. One or more listeners can register to be notified about events of a particular kind from a particular source. Sometimes this model is called delegation, since it allows the programmer to delegate authority for event handling to any object that implements the appropriate listener interface. The AWT event model lets you both handle and generate AWT events. Event handlers can be instances of any class. As long as a class implements an event listener interface, its instances can handle events. In every program that has an event handler. The steps are the following:

· In the class statement of the event handler, code declaring that the class implements a listener interface (or extends a class that implements a listener interface).

· Code that registers an instance of the event handling class as a listener upon one or more components. For example, using the addActionListener(Listener) method.

· The implementation of the methods in the listener interface. For example, using the actionPerformed(ActionEvent).

Any number of event listener objects can listen for all kinds of events from any number of event source objects. For example, a program might create one listener per event source. Or a program might have a single listener for all events from all sources. A program can even have more than one listener for a single kind of event from a single event source. To reduce unnecessary code, you can use adapters and inner classes. ”

6. Using desktop colors.

Method of Adaptation: enabling a feature.

Level of Support: option.

“ It is common for platform desktops (Windows95, Solaris/CDE, etc.) to provide a color scheme for objects on the desktop, and typically this scheme is configurable by the user. It is usually desirable to have applications running on that desktop use that color scheme in order to maintain visual consistency. The AWT provides a simple API for accessing and using these desktop colors. The API involves introducing a new type of "symbolic" color, which is represented by a subclass of java.awt.Color: java.awt.SystemColor. A SystemColor object can be used just like any other Color object, the only difference being that the actual value that represents its current color may change dynamically (on systems which support dynamic notification when the user changes the color scheme). SystemColor objects are defined by the system and cannot be instantiated by Java programs. ”

7. Component Library in the AWT.

Method of Adaptation: enabling a feature.

Level of Support: option.

· “ All components except menus are implemented as subclasses of the Component class. From Component, they inherit a huge amount of functionality. Here's a quite complete list of the functionality Component provides:

· Basic drawing support. Component provides the paint(), update(), and repaint() methods, which enable Components to draw themselves onscreen. See Drawing for more information.

· Event handling. Component defines the general-purpose handleEvent() method and a group of methods such as action() that handle specific event types. Component also has support for keyboard focus, which enables keyboard control of components. See Event Handling for more information.

· Appearance control: font. Component provides methods to get and set the current font, and to get information about the current font. See Working with Text for information.

· Appearance control: color. Component provides the following methods to get and set the foreground and background colors: setForeground(Color), getForeground(), setBackground(Color), and getBackground(). The foreground color is the color used for all text in the component, as well as for any custom drawing the component performs. The background color is the color behind the text or graphics. For the sake of readability, the background color should contrast with the foreground color.

· Image handling. Component provides the basis for displaying images. Note that most Components can't display images, since their appearance is implemented in platform-specific code. Canvases and most Containers, however, can display images. See Using Images for information on working with images.

· Onscreen size and position control. All component sizes and positions (except for those of Windows) are subject to the whims of layout managers. Nonetheless, every component has at least some say in its size, if not its position. The preferredSize() and minimumSize() methods allow a component to inform layout managers of the component's preferred and minimum sizes. Component also provides methods that get or set (subject to layout manager oversight) the component's current size and location.

You can't easily change most components' appearance in any major way. You can make some minor appearance changes, such as to the font and background color, by using the appearance-affecting methods and variables provided by a component's class and superclasses. However, you can't completely change a component's appearance even by creating a subclass of the component's class, since most components' platform-specific implementation overrides any drawing the component performs. To change a component's appearance, you must implement a Canvas subclass that has the look you want but the same behavior users expect from the component. ”

Data

Proxy

Control Inbox

Control Outbox

File Inbox

File Outbox

Handler1

Handler2

Handler3

myFileSystem

currentLocation

URL

File

System

(Client)

AppletMailServer

Control Inbox

Control Outbox

File Inbox

File Outbox

Handler1

Handler3

Handler2

myFileSystem

currentLocation

URL

Data

Master

File

System

(Server)

AppletServerMailServer

File Message

Control Message

Control Message

File Message

Data Message

Server Side

Client Side

FTP implementation using CSF

1
3

