D. Framework documentation

The framework defines the main following features (See Diagram 1: Framework object model):

· Tracking of all the operations performed in the system is made using an Observer pattern, where the Tracking class plays the role of Observer and Attendance, Submission and Processing classes play the role of Observable.  In this way, different monitors can be attached to these classes.

· Different kinds of items can be modeled using a Composite pattern.  The composed item defines also a checking to ensure that objects of this composition belong to a given type.

· An item is allowed to be in different stages during its lifetime.  A State pattern is used to accomplish this goal.

· Submissions can be validated according to different rules expressed through class Validation.

· Processing steps can be implemented using several policies via class Policy.

Note:  Security issues are out of the concerns of the framework, and they are implemented in the target system as separate aspects.
Hot spots

The hot spots defined in the framework to extend and customize applications are the following:

1. Specifying  different types of monitoring

You should subclass the Tracking class, implementing  the methods storeTransaction() and update().  The first one defines the way you use to save information about transactions (for example: in a file, in a database, as strings, etc.).  The second one is the entry point of the transactions sent by monitored classes. 

Related uses: Registering an object to be tracked, Announcing transactions.

2. Registering an object to be tracked

The class of this object must be a subclass of Attendance, Submission or Processing.  Methods addObserver() and removeObserver() are used to register a given object to be monitored by a tracking object. Tracking objects inherits from Tracking class.

Related uses: Specifying different types of monitoring, Announcing transactions.

3. Announcing transactions

An object that wants to announce the transactions it performs should inherits from Attendance, Submission or Processing, and use the method notifyObservers.

Related uses: Specifying different types of monitoring, Registering an object to be tracked.

4. Defining composite structures for an item

By means of the classes SingleItem and ComposedItem you can define a hierarchical structure for your items in the conference.  The method checkItem() must be implemented to define the rules to add an object of a given type into a composite object.  The method getTopics() needs also to be defined, and it should return the list of topics of interest for the conference that such item stores.

Related uses: Handling states in item lifecycle.

5. Handling states in item lifecycle

An item can be in several stages during its lifetime, and the template method processState() allows the item to move from one state to the next one.  You can subclass ItemState and define different states for an Item.  The method next() should specify the possible transicions from the current state to other states, according to the situation of the associated item.

Related uses: Defining composite structures for an item.

6. Dealing with submissions

To  model the concept of submission you should create a subclass of Submission and implement the method create() with all the arguments needed for this procces. Moreover, you have to provide the behavior for the method newSubmission() that is called when a new interesting object is entered to the system.  The template method applyValidation() polls all the validation policies included in the submission and returns the result of this evaluation.  All the desired validation policies should be included in method defineValidation.

Related uses: Specifying different validation rules for submission, Relating submissions and items.

7. Specifying different validation rules for submissions

You can write different validation policies for submissions by subclassing the Validation class.  The method validate must define the policy itself, and the isOk() method should specify the conditions to apply the policy on a given item.

Related uses: Dealing with submissions, Relating submissions and items.

8. Relating submissions and items

The framework specifies that items and submissions are related but the developer is free to choose the way of implement this relationship. The code to deal with items should be included in the behavior of  methods create() and newSubmission().

Related uses: Dealing with submissions, Specifying different validation rules for submissions.

9. Dealing with attendance

Attendance class should be subclassed to model information about people registered for items.  To accomplish this situation, you need to define the method newAttendance() for incoming attendances and method createAttendance to provide a specify way of building an attendance.  The method checkAttendance() should express some rules (if there is anything) to verify the incoming information.  The methods addRecord() and removeRecord() are used to effectively store this information in the system.

Related uses: Registering information about attending, Relating attendance and items.

10. Registering information about attending

You have to inherits your class from Record class and specify an specific way of storing attendance information.

Related uses: Dealing with attendance, Relating attendance and items.

11. Relating attendance and items

This relationship is prescript by the framework, but developers must define the way of implementing it.  The code to deal with items should be included in the behavior of  methods create() and newAttendance().

Related uses: Dealing with attendance, Registering information about attending.

12. Specifying specific processing steps for items

In order to specify the different processing steps you desire for a set of items, you should subclass the Processing class and provide the behavior for the methods: setPolicy() if you want a given policy of processing, and the method defineProcessing() to define how the specific processing actions will take place.  The template method applyPolicy() calls the policy attached with a given processing step. 

Related uses: Defining policies to process items, Relating processing steps and items, Interconnecting different processing steps.

13. Defining policies to process items

Your class must inherits from Policy and specify some conditions that items should fulfill to be accepted by a processing step.

Related uses: Specifying specific processing steps for items, Relating processing steps and items, Interconnecting different processing steps.

14. Relating processing steps and items

The specific type of relationship between items and processing steps should be implemented by the developer.

Related uses: Specifying specific processing steps for items, Defining policies to process items, Interconnecting different processing steps.

15. Interconnecting different processing steps

Processing steps can be related representing different orders and nested processing.  These work should be implemented including the desired processing steps (subclasses of Processing) and their activations into the method defineProcessing() of the  parent  module.

Related uses: Specifying specific processing steps for items, Defining policies to process items, Relating processing steps and items.

Implementation of the Conference Administration System

The Conference Administration System was implemented as an specific application using  the features provided by the framework described in the previous section. (See Diagram 2 and Diagram 3).  The target application fits quite well into the framework structure, however some adaptations were required.  I feel that more iterative steps using other applications are needed to achieve a mature version of the framework.



























































































































































































































1
29

