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Abstract - The Traveling Salesman Problem (TSP) is perhaps 
the most famous optimization problem in the set NP-hard. 
Many problems that are natural applications in computer 
science and engineering can be modeled using TSP and 
therefore, researchers are searching implementations focusing 
on the quality of the produced solution and their 
computational time. An innovative Polynomial-Time 
Approximation Scheme (PTAS) for the Euclidean TSP was 
given by Sanjeev Arora. To date, there is no evidence that it 
can be implemented to be practically useful. In light of this, 
we propose an implementation of the Euclidean TSP that is 
based on the essential steps of the Arora’s PTAS and adds 
some heuristics to improve the running time. The paper 
includes the description of a C++ Arora-based 
implementation and a comparative analysis of this 
implementation with various competitive algorithms for the 
Euclidean TSP.  

Keywords: Geometric Optimization, Approximation 
Algorithms, Heuristic Algorithms, Traveling Salesman 
Problem (TSP).  

1 Introduction 

 The Traveling Salesman Problem (TSP) is perhaps the 
most well known combinatorial optimization problem in the 
set NP-Hard. The significance of TSP is that includes many 
problems that are natural application in computer science and 
engineering. 

There are different variations of TSP. The book “The 
Traveling Salesman Problem and Its Variations” provides the 
state of the art of TSP up to 2004 [6]. Several works are 
linked to a restricted version of TSP, for instance, [1] [2] [3] 
and [4] propose approximation algorithms for geometric TSP 
in general, and Euclidean TSP in particular.     

Given n nodes in R2 (more generally in Rd), TSP is to 
find the minimum length path that visits each node exactly 
once. If distance is computed using distance between nodes 
then the problem is called Euclidean TSP. This problem can 
be used as a model for the study of general methods that can 
be applied to a wide range of geometric optimization 
problems.  

An innovative Polynomial-Time Approximation Scheme 
(PTAS) for the Euclidean TSP was discovered by Arora [2]. 

The main idea is to recursively divide the problem into 
weakly dependent subproblems that are solved bottom-up, 
using dynamic programming to find a tour.  

Arora’s PTAS is asymptotically the most efficient 
known PTAS, but have never been used in practice due to 
practical implementation aspects. There is no evidence that it 
can be implemented to be competitive with other algorithms 
such as Lin-Kernighan algorithm that produces good quality 
solutions in near lineal time [5]. In light of this, this paper 
describes an implementation of the Euclidean TSP that is 
based on the essential steps of Arora´s PTAS and adds some 
heuristics to improve the running time. Next, we describe the 
essential steps in the context of our approach.   

First we perform a simple perturbation of the input 
instance. A proposed regular grid classifies geometrically 
nodes in the plane. The cell size c is the minimum distance 
between nodes.  In that case, the node coordinates and cell 
size are modified by a factor equal to 2c to ensure that the 
minimum distance is two. Finally, to avoid overlaps in the 
next phase, a new shift place coordinates in odd positions. 
Following, the dissection step divides the bounding box: the 
smallest square containing all nodes whose size is 2k. The 
successive subdivisions generate a quadtree hierarchy until 
every quadtree region has only one node inside.   

Next, the adjacent quadtree regions are communicated 
via portals. The portals for a dissection are a set of points on 
the square edges. On each edge a square has at least one 
portal to communicate with every adjacent terminal square 
(neighbor). This portals configuration improves the execution 
time.  Finally the path is computed using dynamic 
programming and the reconstruction is made in the path´s 
trimming step, starting from the information registered by the 
dynamic programming table.  

A TSP implementation in C++ is presented and 
discussed along with some results on several moderate sized 
problems. We have compared the performance of our 
implementation with other algorithms included in Concorde 
Solver Software [7]. For comparative analysis we have used 
TSP instances from TSPLIB [8].  

This paper has the following structure. Section 2 
describes the proposed variant of the Arora´s PTAS for TSP. 
Section 3 describes the design of a TSP software based on 
Arora´s proposal. Section 4 includes a comparative analysis 
between our implementation and those implemented in the 



Concorde software.  Finally Section 5 highlights conclusions 
and future work. 

 

2 Our Arora-based algorithm  
Arora discovered the first solution to find PTAS for the 

Euclidean TSP. Given n nodes in R2, and for every fixed c > l, 
a randomized version of the scheme finds a (1+1/c)-
approximation to the optimum traveling salesperson tour in  
O(n (log n) O(c) ) time[2]. The main idea of this approach is to 
divide recursively the plane, and next apply dynamic 
programming to find a tour that crosses each of the partition at 
most O(c) times.   

Arora´s PTAS algorithm is based on a theorem called 
“Structure Theorem”[2]:  

 “Let the minimum nonzero internode distance in a TSP 
instance be 8 and let L be the size of its bounding box. Let 
shifts 0 ≤ a, b ≤ L be picked randomly. Then with probability 
at least 1/2, there is a salesman path of cost at most (1 + 1/c)-
OPT that is (m, r)-light with respect to the dissection with 
shift (a, b), where m = O(c log L) and r = O(c)” 

Although our implementation includes the main steps of 
the Arora´s PTAS, each of them has been modified at 
implementation level focusing on the computational time. 
Like Arora´s PTAS, our algorithm includes the following 
steps: perturbation, random partition, portal-respecting tour, 
dynamic programming and tour reconstruction. Next, we 
describe in detail the essential steps.  

2.1 Perturbation 

At the Arora’s perturbation step, the instance must be 
prepared to reflect the structure theorem. Perturbation ensures 
that each node lies on the unit grid (i.e has integer 
coordinates) and every minimum internode distance is 2. The 
smallest axis-parallel square containing the nodes is called 
bounding box. The perturbation will ensure that its sidelength 
is at most n2/2.  The partitioning is defined using some 
randomized variant of quadtree. 

We can observe empirically that computation does not 
improve starting from a threshold u, then values of c > u are 
not convenient due to both the size of the bounding box and 
the number of squares in the quadtree must be increased 
influencing the efficiency of the following steps.  The constant 
that reflects implementation factors in the big-oh expressions 
is so large in comparison to the theoretical advantages of 
selecting c > u. 

Our implementation proposes to classify geometrically n 
nodes through a regular grid composed by square cells whose 
side length is equal to the minimum distance among nodes. In 
that case, the node coordinates and cell size are modified by a 
factor equal to 2c to ensure that the minimum distance is two. 
Finally, to avoid overlaps in the next phase, a new shift places 
coordinates in odd positions. Fig. 1 and Fig. 2 summarize the 
differences between the perturbation proposed by Arora and 
our implementation respectively regarding the steps described 
above. 

 
 

Figure 1. Arora´s PTAS perturbation 
 

 
 

 
 

Figure 2. Arora-based perturbation 
 
 
 

2.2     Shifted Quadtree 

At the Arora’s dissection step, a recursive partition of 
the bounding box is made using a randomized variant of 
quadtree. Random integer values for a and b are chosen, and a 
(a,b)-shift of the bounding box is defined by shifting x- and y- 
coordinates by a and b respectively. The shifted quadtree is 
created during the dissection of the bounding box (Fig.3). 

Dissection step ends when each square has a size <=1, 
which means that each square will have at most one node 
inside. No node is in edges because their coordinates have 
been scaled by a factor of two, so nodes have odd coordinates 
while partition lines have even coordinates. There are O(L2) 
squares in the partition and the maximum number of level is 
log (L) Shift of the implementation chooses a and b values 
equals to one unit (see Fig. 4).   

 
 



 
 

Figure 3. Arora´s PTAS shift 
 

 

 
 

Figure 4. Arora-based shift 
 

 

2.2 Portal-Respecting Tour 

Next, a set of portals are placed in the grid lines. Squares 
share some portals which are the only way of communication 
between two adjacent neighbors. Portals are predefined and 
the execution time depends of the portal configuration. 
Salesman is allowed to enter and exit squares only by crossing 
these specified points. A possible path from i to j nodes can 
be expressed as ( )( )( )( )jPPPPPPi ,,,, 332211 sequence where 1P , 

2P and 3P are portals. And, a ( )rm, -light path is a path whose 

edges can be crossed at most r times and always over portals.  
According to Arora´s PTAS, each square has four 

portals, one at each corner, and additionally m portals equally 
spaced on each side of the square. A path is one that visits 
each node in the plane once, but can pass through portals 
more than once ( Fig. 5). 

To increase the number of portals implies to increase the 
number of combinations of them and then, the pairs of 
enter/exit portal. Because of this practical reason we decided 
to place the portals in such a way that there is at most one 
portal communicating neighbors’ squares (see Fig. 6). That 
decision is based on the hypothesis that one only way of 

visiting nodes from a square to another one is sufficient for 
computing the path due to portals are not part of the final 
solution path. The structure of the generated quadtree is 
partially depicted in Fig. 7. 
 
 

 
 

Figure 5.   Arora´s PTAS portalization 
 
 
 

 
 

Figure 6. Arora-based portalization 
 
 
 

 
 

Figure 7.  Two levels in the quadtree: 4-way recursive 
partition 



2.3 Finding the Min-Cost k-light Portal-
Respecting Tour 

Finally, the optimal ( )rm, -light salesman path is founded 

using dynamic programming over the shifted quadtree. 
Considering that we have interface information, i.e. the portals 
used by the tour to enter/exit a quadrant and the order in which 
the tour uses these portals, the subproblem inside each 
quadrant can be solved independently of the subproblems 
outside the quadrant. Starting from quadtree leaves, the 
solution is constructed in a bottom-up way, sub-problems 
allow solving the problem at the parent level. We solve the 
leaf subproblems first and use their solutions to calculate the 
solutions of internal node subproblems. The following 
pseudocode summarizes the essential steps: 

1: DoDynamicProgramming(q: quadtree) : matrix 
2:    leaves = q.getLeaves() 
3:   squares= q.getSquares() 
4:   for i=0 to leaves.getSize() 
5:    calculateMatrix(leaves[i]) 
6:   for i=0 to squares.getSize() 
7:    calculateMatrix(squares[i]) 
 
Following, we show the pseudocode of calculateMatrix: 
 
1: calculateMatrix( c:square) : Matrix 
2:   distance = MAXINT 
3:   portals = c.getPortals() 
4:   pairs = doPairings(portals) 
5:   for i=0 to pairs.getSize() 
6:    lastDistance = calculateDistance(c,pairs[i]) 
7:    setBestDistance(distance, lastDistance) 
 
We store information in a lookup table that, for each 

square and for each choice of the interface contains the 
optimum solution for the subproblem inside the square. In Fig. 
8 square identifies the quadrant processed to obtain the best 
solution. Pairings refer to the initial and final portal of the 
respective tour.  Each  table entry stores a partial solution 
together with the manner in which it can be reconstructed in 
the quadrant.  

 

 
 
Figure 8. Dynamic Programming Table Structure 

We consider only interfaces related to tours that do not 
cross each other. The number of possibilities is given by the 
Catalan number.  Maybe more than one tour inside a square is 
needed to cover all the nodes that are inside the square. As a 
final remark, the solution can be reconstructed from the 
dynamic programming table looking up the decisions made at 
each step and choosing the shortest path stored in each child 
square entry. Dynamic programming is used to find the ( )rm, -

light salesman path using the quadtree generated previously. 
When the table is completed, a recursive algorithm that does 
not take into account portals and borders is used to reconstruct 
the path.  The following pseudocode summarizes the trimming 
process: 

1: doPathTrimming(q:quadtree, m:matrix,  
                                 index:integer, a:array):void 
2:   if    isLeaf(q,i) 
3:          a.add(q[index].getNode()) 
4:   else 
5:         squares = m.getSubpath() 
6:   for i=0 to squares.getSize() 
7:    doPathTrimming(q,m,squares[i+.getIndex(), a) 
 
The reconstruction is made in the path’s trimming step, 

starting from the information stored by the dynamic 
programming table. We give the dynamic programming 
algorithm more hints about which portals are used by the tour 
to enter/exit each dissection square. Instead of defining the 
number of portals to be placed considering the constant 
proposed by Arora PTAS, we decide to place portals  in lines 
belonging to quadrants that  come into contact with some 
neighbor quadrant.  Fig. 9 and Fig. 10 show the path before 
trimming step and after trimming step respectively. 

 
 

 
Figure 9. Path before trimming step 

 

 
Figure 10. Path after trimming step  



 
 

Figure 11.  Arora-based software: Class Diagram 
 

 

3 An Implementation of the Arora-
based algorithm 
 The Arora-based software was modeled in UML in 

terms of class diagrams (Fig. 11) and sequence diagrams (Fig. 
12). 

Fig. 11 shows a class diagram of this software that 
includes the main classes and their interrelationships. 
Perturbation class implements functionality for transforming 
the main input into a valid input for the Arora-based 
implementation. It takes an important role processing node 
coordinates and computing mappings between original nodes 
and perturbed nodes, in order to reverse changes made in the 
node position in the plane. This last responsibility allows us to 
calculate the actual tour size of the final solution, contrasting it 
with the original distribution of the nodes.  

ShiftNodes and cutNodes are two important methods in 
the perturbation step. They contribute to geometrical 
classification of input points, calculating the minimum 
internode distance in both axis and applying this distance to 
compute the classification by shifting the coordinates, and 
next obtaining odd coordinates. 

Quadtree and QuadtreeTSP manage the hierarchy of 
squares in which the plane is partitioned. We choose an 
implementation of the quadtree based on linear array, to 
achieve a good performance in both, execution times and 

memory usage. This quadtree representation allows us a quick 
indexing and then an efficient path reconstruction. 

We add an optimization in the quadtree memory usage by 
assigning an initial number of square positions and 
incrementing it, if necessary, in runtime execution. 

QuadtreeTSP provides a set of useful methods for solving 
the problem such as getSharedPortals which returns a list of 
common portals from a pair of squares, or getLeaves and 
getFathers, which return a list of leaves and father squares, 
respectively, and isAdjacent which determines whether or not 
a pair contains squares that are adjacent. 

After perturbing the input nodes and building a quadtree, 
portals can be placed in each one of the quadrants or 
dissection square. This functionality is also provided by 
Portalization class.  

The dynamic programming has to enumerate all possible 
“interfaces”. This involves enumerating ways of choosing 
crossing points among the portals. This functionality is 
provided by the class DynamicProgramming. It is associated 
with the class QuadtreeTSP, a relevant collaborator and the 
Trimer class which provides functionality for reconstructing 
the resulting path in the method getPathTrimmed, and 
calculating the actual size of the path by using the 
Portalization class and the mapping of original points saved in 
this class.



 
 
 
 
 

 
 

Figure 12.  Arora-based software: sequence diagram  
 

We give to the dynamic programming algorithm more 
hints about which portals are used by the tour to enter/exit 
each dissection square. We define an order to cover the 
lines, going from top to bottom and from right to left that 
allows us to know how portals enter in each one of the 
quadrants. Next it is possible to execute the compression 
method.  

4 An Empirical Analysis 

This section includes a comparative analysis of the 
Arora-based implementation with other implementations 
provided by the Concorde software [7]. Concorde is a C 
code that implements the symmetric TSP. It provides both 
exact algorithms such as a solver for a variant of the TSP 
called multiple TSP and, other algorithms. Table I shows 
performance ratios for TSPLIB instances (first column) 
whose optimal solution is known (second column) and our 
Arora-based implementation (third column).  

We run our program on an AMD Athlon processor 
3500+ with 1 GB of RAM. The instances were selected 
from TSPLIB, a library of sample instances for the TSP 
(and related problems) from various sources and of various 
types. Concorde's TSP solver has been used to obtain the 
optimal solutions to all TSPLIB instances having up to 

15,112 nodes.  Fig. 13 depicts the same information 
graphically. 

 
 

Instance Concorde Solver Arora PTAS 
att48 0,191 0,17643248 

berlin52 0,08 0,09440166 

burma14 0,04 0,00924726 

dantzig42 0,26 0,08523932 

rd18 0,06 0,02977082 

rd22 0,03 0,03742933 

rd25 0,06 0,03518771 

rd27 0,19 0,05421247 

rd31 0,11 0,06634306 
rd34 0,14 0,070198307 

rd39 0,16 0,091789599 

rd75 2,47 0,515969208 

ulysses16 0,05 0,01085529 

kroC100 0,34 0,332153947 

kroE100 1,47 1,203245664 

ch130 1,23 1,208151874 

pr144 1,14 2,048850063 

kroA150 4,94 1,039160005 

rat195 21,02 19,84023863 

 
Table I 

 



 
 

 
 

Figure 13. Arora-based implementation versus Concorde 
 
 

Table II shows the combined length of the tour computed 
for different heuristic algorithms and our implementation 
for TSPLIB instances whose shortest tour is known and 
shown in the second column (Concorde solver). Arora 
implementation is compared with other implementation of 
algorithms such as Chained Lin-Kernighan, greedy and  
nearest neighbor [5].  

Experimental results show that Arora´s PTAS is 
practically feasible. Table I and Table II show that in spite 
of its good performance, it seems that our approach must be 
improved to generate more approximate solutions. In most 
cases the significant theoretical results are lost due to 
implementation decisions. We think the quality of the 
solutions had to do with implementation aspects linked to 
data structures and the need to give more hints about which 
portals must be used by the tour.  
 

5 Conclusions 
This paper describes an implementation in C++ for the 

Euclidean TSP that is based on the novel Arora´s PTAS. 
We describe how to implement the essential steps of this 
algorithm in a way that improves the running time. The 
paper includes experimental results using TSPLIB instances 
and the Concorde Software to compare our implementation 
with other ones. Our implementation had shown the 
practical feasibility of Arora´s PTAS.  

The existing TSP software [5] provides programs in the 
form of a “callable library”. Besides, the available TSP 
software does not allow us to experiment with Arora´s 
PTAS. Considering this, we foresee to define an 
architectural framework that assists, on the one hand, in the 
experimentation with the combination of different 
implementations of various steps of an algorithm and on the 
other hand, in the construction of solutions for higher 
dimension TSP and other geometric NP-hard problems. 
This framework should facilitate to experiment with 
different platforms and programming languages. 
 

Instance Concorde  
Solver 

Greedy Nearest 
Neightbour 

Kernighan Arora 

A172 1673 1958 2186 1677 2783,06 

a190 1847 2302 2256 1848 3086,66 

a195 1922 2225 2400 1940 3134,183 

att48 33522 40159 42597 33522 49466,1 

bayg21 8114 9769 9969 8114 10035,92 

bayg25 8798 10541 11396 8798 10287,61 

bayg28 9055 9800 12092 9055 10637,62 

berlin52 7542 9951 8848 7542 8254,06 

Burma14 30 36 33 30 26,4974 

Dantzig42 675 894 883 675 861,478 

rd18 34 37 38 34 63,9063 

Ulysses16 52 53 56 52 50,0808 

Ulysses22 72 84 77 72 65,7936 

st70 675 783 831 675 777,161 

pr76 108159 140349 150800 108159 170924,7 

kroE100 22068 24846 27823 22068 24814,79 

gr120 1609 2085 2131 1609 2689,556 

ch130 6110 7167 7656 6139 11677,6 

pr144 58537 65844 63740 59274 63943,3 

kroA150 26524 31892 32636 26525 45731,14 

rat195 2323 2648 2658 2329 4056,60 

kroA200 29368 34554 36106 29368 45108,27 

eil101 629 794 826 629 760,835 

a280 2579 3099 3229 2606 4182,06 

 
Table II 
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