
An Empirical Analysis of Approximation Algorithms for
Euclidean TSP

Bárbara Rodeker1, M. Virginia Cifuentes1,2, and Liliana Favre1,2

1Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
2Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

Abstract - The Traveling Salesman Problem (TSP) is perhaps
the most famous optimization problem in the set NP-hard.
Many problems that are natural applications in computer
science and engineering can be modeled using TSP and
therefore, researchers are searching implementations focusing
on the quality of the produced solution and their
computational time. An innovative Polynomial-Time
Approximation Scheme (PTAS) for the Euclidean TSP was
given by Sanjeev Arora. To date, there is no evidence that it
can be implemented to be practically useful. In light of this,
we propose an implementation of the Euclidean TSP that is
based on the essential steps of the Arora’s PTAS and adds
some heuristics to improve the running time. The paper
includes the description of a C++ Arora-based
implementation and a comparative analysis of this
implementation with various competitive algorithms for the
Euclidean TSP.

Keywords: Geometric Optimization, Approximation
Algorithms, Heuristic Algorithms, Traveling Salesman
Problem (TSP).

1 Introduction

 The Traveling Salesman Problem (TSP) is perhaps the
most well known combinatorial optimization problem in the
set NP-Hard. The significance of TSP is that includes many
problems that are natural application in computer science and
engineering.

There are different variations of TSP. The book “The
Traveling Salesman Problem and Its Variations” provides the
state of the art of TSP up to 2004 [6]. Several works are
linked to a restricted version of TSP, for instance, [1] [2] [3]
and [4] propose approximation algorithms for geometric TSP
in general, and Euclidean TSP in particular.

Given n nodes in R2 (more generally in Rd), TSP is to
find the minimum length path that visits each node exactly
once. If distance is computed using distance between nodes
then the problem is called Euclidean TSP. This problem can
be used as a model for the study of general methods that can
be applied to a wide range of geometric optimization
problems.

An innovative Polynomial-Time Approximation Scheme
(PTAS) for the Euclidean TSP was discovered by Arora [2].

The main idea is to recursively divide the problem into
weakly dependent subproblems that are solved bottom-up,
using dynamic programming to find a tour.

Arora’s PTAS is asymptotically the most efficient
known PTAS, but have never been used in practice due to
practical implementation aspects. There is no evidence that it
can be implemented to be competitive with other algorithms
such as Lin-Kernighan algorithm that produces good quality
solutions in near lineal time [5]. In light of this, this paper
describes an implementation of the Euclidean TSP that is
based on the essential steps of Arora´s PTAS and adds some
heuristics to improve the running time. Next, we describe the
essential steps in the context of our approach.

First we perform a simple perturbation of the input
instance. A proposed regular grid classifies geometrically
nodes in the plane. The cell size c is the minimum distance
between nodes. In that case, the node coordinates and cell
size are modified by a factor equal to 2c to ensure that the
minimum distance is two. Finally, to avoid overlaps in the
next phase, a new shift place coordinates in odd positions.
Following, the dissection step divides the bounding box: the
smallest square containing all nodes whose size is 2k. The
successive subdivisions generate a quadtree hierarchy until
every quadtree region has only one node inside.

Next, the adjacent quadtree regions are communicated
via portals. The portals for a dissection are a set of points on
the square edges. On each edge a square has at least one
portal to communicate with every adjacent terminal square
(neighbor). This portals configuration improves the execution
time. Finally the path is computed using dynamic
programming and the reconstruction is made in the path´s
trimming step, starting from the information registered by the
dynamic programming table.

A TSP implementation in C++ is presented and
discussed along with some results on several moderate sized
problems. We have compared the performance of our
implementation with other algorithms included in Concorde
Solver Software [7]. For comparative analysis we have used
TSP instances from TSPLIB [8].

This paper has the following structure. Section 2
describes the proposed variant of the Arora´s PTAS for TSP.
Section 3 describes the design of a TSP software based on
Arora´s proposal. Section 4 includes a comparative analysis
between our implementation and those implemented in the

Concorde software. Finally Section 5 highlights conclusions
and future work.

2 Our Arora-based algorithm
Arora discovered the first solution to find PTAS for the

Euclidean TSP. Given n nodes in R2, and for every fixed c > l,
a randomized version of the scheme finds a (1+1/c)-
approximation to the optimum traveling salesperson tour in
O(n (log n) O(c)) time[2]. The main idea of this approach is to
divide recursively the plane, and next apply dynamic
programming to find a tour that crosses each of the partition at
most O(c) times.

Arora´s PTAS algorithm is based on a theorem called
“Structure Theorem”[2]:

 “Let the minimum nonzero internode distance in a TSP
instance be 8 and let L be the size of its bounding box. Let
shifts 0 ≤ a, b ≤ L be picked randomly. Then with probability
at least 1/2, there is a salesman path of cost at most (1 + 1/c)-
OPT that is (m, r)-light with respect to the dissection with
shift (a, b), where m = O(c log L) and r = O(c)”

Although our implementation includes the main steps of
the Arora´s PTAS, each of them has been modified at
implementation level focusing on the computational time.
Like Arora´s PTAS, our algorithm includes the following
steps: perturbation, random partition, portal-respecting tour,
dynamic programming and tour reconstruction. Next, we
describe in detail the essential steps.

2.1 Perturbation

At the Arora’s perturbation step, the instance must be
prepared to reflect the structure theorem. Perturbation ensures
that each node lies on the unit grid (i.e has integer
coordinates) and every minimum internode distance is 2. The
smallest axis-parallel square containing the nodes is called
bounding box. The perturbation will ensure that its sidelength
is at most n2/2. The partitioning is defined using some
randomized variant of quadtree.

We can observe empirically that computation does not
improve starting from a threshold u, then values of c > u are
not convenient due to both the size of the bounding box and
the number of squares in the quadtree must be increased
influencing the efficiency of the following steps. The constant
that reflects implementation factors in the big-oh expressions
is so large in comparison to the theoretical advantages of
selecting c > u.

Our implementation proposes to classify geometrically n
nodes through a regular grid composed by square cells whose
side length is equal to the minimum distance among nodes. In
that case, the node coordinates and cell size are modified by a
factor equal to 2c to ensure that the minimum distance is two.
Finally, to avoid overlaps in the next phase, a new shift places
coordinates in odd positions. Fig. 1 and Fig. 2 summarize the
differences between the perturbation proposed by Arora and
our implementation respectively regarding the steps described
above.

Figure 1. Arora´s PTAS perturbation

Figure 2. Arora-based perturbation

2.2 Shifted Quadtree

At the Arora’s dissection step, a recursive partition of
the bounding box is made using a randomized variant of
quadtree. Random integer values for a and b are chosen, and a
(a,b)-shift of the bounding box is defined by shifting x- and y-
coordinates by a and b respectively. The shifted quadtree is
created during the dissection of the bounding box (Fig.3).

Dissection step ends when each square has a size <=1,
which means that each square will have at most one node
inside. No node is in edges because their coordinates have
been scaled by a factor of two, so nodes have odd coordinates
while partition lines have even coordinates. There are O(L2)
squares in the partition and the maximum number of level is
log (L) Shift of the implementation chooses a and b values
equals to one unit (see Fig. 4).

Figure 3. Arora´s PTAS shift

Figure 4. Arora-based shift

2.2 Portal-Respecting Tour

Next, a set of portals are placed in the grid lines. Squares
share some portals which are the only way of communication
between two adjacent neighbors. Portals are predefined and
the execution time depends of the portal configuration.
Salesman is allowed to enter and exit squares only by crossing
these specified points. A possible path from i to j nodes can
be expressed as ()()()()jPPPPPPi ,,,, 332211 sequence where 1P ,

2P and 3P are portals. And, a ()rm, -light path is a path whose

edges can be crossed at most r times and always over portals.
According to Arora´s PTAS, each square has four

portals, one at each corner, and additionally m portals equally
spaced on each side of the square. A path is one that visits
each node in the plane once, but can pass through portals
more than once (Fig. 5).

To increase the number of portals implies to increase the
number of combinations of them and then, the pairs of
enter/exit portal. Because of this practical reason we decided
to place the portals in such a way that there is at most one
portal communicating neighbors’ squares (see Fig. 6). That
decision is based on the hypothesis that one only way of

visiting nodes from a square to another one is sufficient for
computing the path due to portals are not part of the final
solution path. The structure of the generated quadtree is
partially depicted in Fig. 7.

Figure 5. Arora´s PTAS portalization

Figure 6. Arora-based portalization

Figure 7. Two levels in the quadtree: 4-way recursive
partition

2.3 Finding the Min-Cost k-light Portal-
Respecting Tour

Finally, the optimal ()rm, -light salesman path is founded

using dynamic programming over the shifted quadtree.
Considering that we have interface information, i.e. the portals
used by the tour to enter/exit a quadrant and the order in which
the tour uses these portals, the subproblem inside each
quadrant can be solved independently of the subproblems
outside the quadrant. Starting from quadtree leaves, the
solution is constructed in a bottom-up way, sub-problems
allow solving the problem at the parent level. We solve the
leaf subproblems first and use their solutions to calculate the
solutions of internal node subproblems. The following
pseudocode summarizes the essential steps:

1: DoDynamicProgramming(q: quadtree) : matrix
2: leaves = q.getLeaves()
3: squares= q.getSquares()
4: for i=0 to leaves.getSize()
5: calculateMatrix(leaves[i])
6: for i=0 to squares.getSize()
7: calculateMatrix(squares[i])

Following, we show the pseudocode of calculateMatrix:

1: calculateMatrix(c:square) : Matrix
2: distance = MAXINT
3: portals = c.getPortals()
4: pairs = doPairings(portals)
5: for i=0 to pairs.getSize()
6: lastDistance = calculateDistance(c,pairs[i])
7: setBestDistance(distance, lastDistance)

We store information in a lookup table that, for each

square and for each choice of the interface contains the
optimum solution for the subproblem inside the square. In Fig.
8 square identifies the quadrant processed to obtain the best
solution. Pairings refer to the initial and final portal of the
respective tour. Each table entry stores a partial solution
together with the manner in which it can be reconstructed in
the quadrant.

Figure 8. Dynamic Programming Table Structure

We consider only interfaces related to tours that do not
cross each other. The number of possibilities is given by the
Catalan number. Maybe more than one tour inside a square is
needed to cover all the nodes that are inside the square. As a
final remark, the solution can be reconstructed from the
dynamic programming table looking up the decisions made at
each step and choosing the shortest path stored in each child
square entry. Dynamic programming is used to find the ()rm, -

light salesman path using the quadtree generated previously.
When the table is completed, a recursive algorithm that does
not take into account portals and borders is used to reconstruct
the path. The following pseudocode summarizes the trimming
process:

1: doPathTrimming(q:quadtree, m:matrix,
 index:integer, a:array):void
2: if isLeaf(q,i)
3: a.add(q[index].getNode())
4: else
5: squares = m.getSubpath()
6: for i=0 to squares.getSize()
7: doPathTrimming(q,m,squares[i+.getIndex(), a)

The reconstruction is made in the path’s trimming step,

starting from the information stored by the dynamic
programming table. We give the dynamic programming
algorithm more hints about which portals are used by the tour
to enter/exit each dissection square. Instead of defining the
number of portals to be placed considering the constant
proposed by Arora PTAS, we decide to place portals in lines
belonging to quadrants that come into contact with some
neighbor quadrant. Fig. 9 and Fig. 10 show the path before
trimming step and after trimming step respectively.

Figure 9. Path before trimming step

Figure 10. Path after trimming step

Figure 11. Arora-based software: Class Diagram

3 An Implementation of the Arora-
based algorithm
 The Arora-based software was modeled in UML in

terms of class diagrams (Fig. 11) and sequence diagrams (Fig.
12).

Fig. 11 shows a class diagram of this software that
includes the main classes and their interrelationships.
Perturbation class implements functionality for transforming
the main input into a valid input for the Arora-based
implementation. It takes an important role processing node
coordinates and computing mappings between original nodes
and perturbed nodes, in order to reverse changes made in the
node position in the plane. This last responsibility allows us to
calculate the actual tour size of the final solution, contrasting it
with the original distribution of the nodes.

ShiftNodes and cutNodes are two important methods in
the perturbation step. They contribute to geometrical
classification of input points, calculating the minimum
internode distance in both axis and applying this distance to
compute the classification by shifting the coordinates, and
next obtaining odd coordinates.

Quadtree and QuadtreeTSP manage the hierarchy of
squares in which the plane is partitioned. We choose an
implementation of the quadtree based on linear array, to
achieve a good performance in both, execution times and

memory usage. This quadtree representation allows us a quick
indexing and then an efficient path reconstruction.

We add an optimization in the quadtree memory usage by
assigning an initial number of square positions and
incrementing it, if necessary, in runtime execution.

QuadtreeTSP provides a set of useful methods for solving
the problem such as getSharedPortals which returns a list of
common portals from a pair of squares, or getLeaves and
getFathers, which return a list of leaves and father squares,
respectively, and isAdjacent which determines whether or not
a pair contains squares that are adjacent.

After perturbing the input nodes and building a quadtree,
portals can be placed in each one of the quadrants or
dissection square. This functionality is also provided by
Portalization class.

The dynamic programming has to enumerate all possible
“interfaces”. This involves enumerating ways of choosing
crossing points among the portals. This functionality is
provided by the class DynamicProgramming. It is associated
with the class QuadtreeTSP, a relevant collaborator and the
Trimer class which provides functionality for reconstructing
the resulting path in the method getPathTrimmed, and
calculating the actual size of the path by using the
Portalization class and the mapping of original points saved in
this class.

Figure 12. Arora-based software: sequence diagram

We give to the dynamic programming algorithm more
hints about which portals are used by the tour to enter/exit
each dissection square. We define an order to cover the
lines, going from top to bottom and from right to left that
allows us to know how portals enter in each one of the
quadrants. Next it is possible to execute the compression
method.

4 An Empirical Analysis

This section includes a comparative analysis of the
Arora-based implementation with other implementations
provided by the Concorde software [7]. Concorde is a C
code that implements the symmetric TSP. It provides both
exact algorithms such as a solver for a variant of the TSP
called multiple TSP and, other algorithms. Table I shows
performance ratios for TSPLIB instances (first column)
whose optimal solution is known (second column) and our
Arora-based implementation (third column).

We run our program on an AMD Athlon processor
3500+ with 1 GB of RAM. The instances were selected
from TSPLIB, a library of sample instances for the TSP
(and related problems) from various sources and of various
types. Concorde's TSP solver has been used to obtain the
optimal solutions to all TSPLIB instances having up to

15,112 nodes. Fig. 13 depicts the same information
graphically.

Instance Concorde Solver Arora PTAS
att48 0,191 0,17643248

berlin52 0,08 0,09440166

burma14 0,04 0,00924726

dantzig42 0,26 0,08523932

rd18 0,06 0,02977082

rd22 0,03 0,03742933

rd25 0,06 0,03518771

rd27 0,19 0,05421247

rd31 0,11 0,06634306
rd34 0,14 0,070198307

rd39 0,16 0,091789599

rd75 2,47 0,515969208

ulysses16 0,05 0,01085529

kroC100 0,34 0,332153947

kroE100 1,47 1,203245664

ch130 1,23 1,208151874

pr144 1,14 2,048850063

kroA150 4,94 1,039160005

rat195 21,02 19,84023863

Table I

Figure 13. Arora-based implementation versus Concorde

Table II shows the combined length of the tour computed
for different heuristic algorithms and our implementation
for TSPLIB instances whose shortest tour is known and
shown in the second column (Concorde solver). Arora
implementation is compared with other implementation of
algorithms such as Chained Lin-Kernighan, greedy and
nearest neighbor [5].

Experimental results show that Arora´s PTAS is
practically feasible. Table I and Table II show that in spite
of its good performance, it seems that our approach must be
improved to generate more approximate solutions. In most
cases the significant theoretical results are lost due to
implementation decisions. We think the quality of the
solutions had to do with implementation aspects linked to
data structures and the need to give more hints about which
portals must be used by the tour.

5 Conclusions
This paper describes an implementation in C++ for the

Euclidean TSP that is based on the novel Arora´s PTAS.
We describe how to implement the essential steps of this
algorithm in a way that improves the running time. The
paper includes experimental results using TSPLIB instances
and the Concorde Software to compare our implementation
with other ones. Our implementation had shown the
practical feasibility of Arora´s PTAS.

The existing TSP software [5] provides programs in the
form of a “callable library”. Besides, the available TSP
software does not allow us to experiment with Arora´s
PTAS. Considering this, we foresee to define an
architectural framework that assists, on the one hand, in the
experimentation with the combination of different
implementations of various steps of an algorithm and on the
other hand, in the construction of solutions for higher
dimension TSP and other geometric NP-hard problems.
This framework should facilitate to experiment with
different platforms and programming languages.

Instance Concorde
Solver

Greedy Nearest
Neightbour

Kernighan Arora

A172 1673 1958 2186 1677 2783,06

a190 1847 2302 2256 1848 3086,66

a195 1922 2225 2400 1940 3134,183

att48 33522 40159 42597 33522 49466,1

bayg21 8114 9769 9969 8114 10035,92

bayg25 8798 10541 11396 8798 10287,61

bayg28 9055 9800 12092 9055 10637,62

berlin52 7542 9951 8848 7542 8254,06

Burma14 30 36 33 30 26,4974

Dantzig42 675 894 883 675 861,478

rd18 34 37 38 34 63,9063

Ulysses16 52 53 56 52 50,0808

Ulysses22 72 84 77 72 65,7936

st70 675 783 831 675 777,161

pr76 108159 140349 150800 108159 170924,7

kroE100 22068 24846 27823 22068 24814,79

gr120 1609 2085 2131 1609 2689,556

ch130 6110 7167 7656 6139 11677,6

pr144 58537 65844 63740 59274 63943,3

kroA150 26524 31892 32636 26525 45731,14

rat195 2323 2648 2658 2329 4056,60

kroA200 29368 34554 36106 29368 45108,27

eil101 629 794 826 629 760,835

a280 2579 3099 3229 2606 4182,06

Table II

6 References

[1] S. Arora. “Approximation schemes for NP-hard geometric
optimization problems: A survey”. Math Programming, 97
(1,2) 2003.

[2] S. Arora. “Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems”;
Journal of the ACM Vol. 45, Issue 5, 753-782, 1998.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy.
“Proof Verification and Hardness of Approximation
Problems”; Journal of the ACM Vol. 45, Issue 3, 501-555,
1998.

[4] Dumitrescu, Adrian and Joseph S. B. Mitchell.
“Approximation algorithms for TSP with neighborhoods in the
plane”; Journal of Algorithms, Vol. 48, Issue 1, 135-159,
2003.

[5] Gutin, G., Punnen, A. (Eds.) “The Traveling Salesman
Problem and Its Variations”. Kluwer Academic Publishers,
2004.

[6] Mitchell, J. S. B. “Guillotine subdivisions approximate
polygonal subdivisions Part II - A simple polynomial-time
approximation scheme for geometric k-MST, TSP, and related
problems.” State University of New York, Stony Brook, 1996.

[7] Concorde Software page.
http://www.tsp.gatech.edu/concorde/index.html , 2009

[8] TSPLIB, Traveling salesman problem library, www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/ 2009

