
 173

Chapter 23. Adaptive Software Development 

Collaboration is difficult, especially when it involves other people.

—Ken Orr (Cutter Consortium Summit 2001)

In 1992, I started working on a short-interval, iterative, RAD process that evolved into Adaptive 

Software Development. The original process, developed in conjunction with colleague Sam Bayer, 
was used to assist in marketing a mainframe RAD tool. Sam and I worked with prospects on pilot 

projects—one-month projects with one-week iterations—in companies from Wall Street 
brokerage houses to airlines to telecommunications firms. Over the next several years, Sam and I 

(together and separately) successfully delivered more than 100 projects using these practices, and 

in June 1994, we published an article on our experiences (Bayer and Highsmith 1994). During the 
early to mid-1990s, I also worked with software companies that were using similar techniques on 

very large projects, while Sam continued to evolve the practices in his work. 

In the mid-1990s, my interest in complex adaptive systems began to add a conceptual background 

to the team aspects of the practices and was the catalyst for the name change from RADical 
Software Development to Adaptive Software Development (Highsmith 1997). ASD has been used 

by companies from New Zealand to Canada for a wide range of project and product types. 

Interestingly, I became aware of XP just a month prior to the publication of Adaptive Software 
Development (Highsmith 2000), when Kent and I exchanged emails. Extreme Programming 

Explained (Beck 2000) and Adaptive Software Development were published within a couple of 

months of each other. 

Complexity theory helps us understand unpredictability and that our inability to predict doesn't 
imply an inability to make progress. ASD works with change rather than fighting against it. In 

order to thrive in turbulent environments, we must have practices that embrace and respond to 

change—practices that are adaptable. Even more important, we need people, teams, and 
organizations that are adaptable and Agile. Agile practices alone are not nearly enough; they 

depend on competent individuals who are nimble and thoughtful. We have become so enamored 

of precise planning, we forget that products evolve from a little planning and a lot of learning as 
we proceed. 

For all the many books on requirements engineering, the best way to determine how a product 

should evolve is to use it. Iteration—building, trying, succeeding, failing, rebuilding—governs 

successful product development, particularly in extremely competitive environments. "Good 
enough" requirements need to be followed by quick delivery and use, and then followed with 

evolutionary changes to the requirements and the product based on that use. Although a number of 

modern software development life cycles have adopted an iterative approach, they still miss the 
mark in dealing with the messiness of complex environments. Despite the fact that development is 

iterative, many people's fundamental assumptions are still deterministic—they think of short 
waterfall life cycles strung together. 

The practices of ASD are driven by a belief in continuous adaptation—a different philosophy and 
a different life cycle—geared to accepting continuous change as the norm. In ASD, the static plan-

design-build life cycle is replaced by a dynamic Speculate-Collaborate-Learn life cycle (see 
Figure 23.1). It is a life cycle dedicated to continuous learning and oriented to change, 

reevaluation, peering into an uncertain future, and intense collaboration among developers, 

management, and customers. 

Figure 23.1. The Speculate-Collaborate-Learn Life Cycle 



 174

A Change-Oriented Life Cycle[1]

[1]
 Some material in this chapter has been adapted from the article "Retiring Lifecycle Dinosaurs" 

(Highsmith 2000a).

A waterfall development life cycle, based on an assumption of a relatively stable business 
environment, becomes overwhelmed by high change. Planning is one of the most difficult 

concepts for engineers and managers to reexamine. For those raised on the science of 
reductionism (reducing everything to its component parts) and the near-religious belief that careful 

planning followed by rigorous engineering execution produces the desired results (we are in 

control), the idea that there is no way to "do it right the first time" remains foreign. The word 
"plan," when used in most organizations, indicates a reasonably high degree of certainty about the 

desired result. The implicit and explicit goal of "conformance to plan" restricts a manager's ability 
to steer the project in innovative directions. 

"Speculate" gives us room to explore, to make clear the realization that we are unsure, to deviate 
from plans without fear. It doesn't mean that planning is obsolete, just that planning is 

acknowledgeably tenuous. It means we have to keep delivery iterations short and encourage 

iteration. A team that "speculates" doesn't abandon planning, it acknowledges the reality of 
uncertainty. Speculation recognizes the uncertain nature of complex problems and encourages 

exploration and experimentation. We can finally admit that we don't know everything. 

The second conceptual component of ASD is collaboration. Complex applications are not built, 

they evolve. Complex applications require that a large volume of information be collected, 
analyzed, and applied to the problem—a much larger volume than any individual can handle by 

him- or herself. Although there is always room for improvement, most software developers are 

reasonably proficient in analysis, programming, testing, and similar skills. But turbulent 
environments are defined in part by high rates of information flow and diverse knowledge 

requirements. Building an eCommerce site requires greater diversity of both technology and 
business knowledge than the typical project of five to ten years ago. In this high-information-flow 

environment, in which one person or small group can't possibly "know it all," collaboration skills 

(the ability to work jointly to produce results, share knowledge, or make decisions) are paramount. 

Once we admit to ourselves that we are fallible, then learning practices—the "Learn" part of the 

life cycle—become vital for success. We have to test our knowledge constantly, using practices 



 175

like project retrospectives and customer focus groups. Furthermore, reviews should be done after 

each iteration rather than waiting until the end of the project. 

An ASD life cycle has six basic characteristics: 

1. Mission focused 

2. Feature based 
3. Iterative 

4. Time-boxed 

5. Risk driven 
6. Change tolerant 

For many projects, the requirements may be fuzzy in the beginning, but the overall mission that 
guides the team is well articulated. (Jens Coldeway's insurance project discussed in Chapter 11 is 

a good example of this.) Mission statements act as guides that encourage exploration in the 
beginning but narrow in focus over the course of a project. A mission provides boundaries rather 

than a fixed destination. Without a good mission and a constant mission refinement practice, 

iterative life cycles become oscillating life cycles—swinging back and forth with no progress. 
Mission statements (and the discussions leading to those statements) provide direction and criteria 

for making critical project tradeoff decisions. 

The ASD life cycle focuses on results, not tasks, and the results are identified as application 

features. Features are the customer functionality that is to be developed during an iteration. While 
documents (for example, a data model) may be defined as deliverables, they are always secondary 

to a software feature that provides direct results to a customer. (A customer-oriented document 

such as a user manual is also a feature.) Features may evolve over several iterations as customers 
provide feedback. 

The practice of time-boxing, or setting fixed delivery times for iterations and projects, has been 
abused by many who use time deadlines incorrectly. Time deadlines used to bludgeon staff into 

long hours or cutting corners on quality are a form of tyranny; they undermine a collaborative 
environment. It took several years of managing ASD projects before I realized that time-boxing 

was minimally about time—it was really about focusing and forcing hard tradeoff decisions. In an 

uncertain environment in which change rates are high, there needs to be a periodic forcing 
function to get work finished. 

As in Barry Boehm's spiral development model, the plans for adaptive iterations are driven by 

analyzing the critical risks. ASD is also change tolerant, not viewing change as a "problem" but 

seeing the ability to incorporate change as a competitive advantage. 

The Basic ASD Life Cycle 

Figure 23.2 shows an expansion of the ASD life cycle phases into specific practices. 

Figure 23.2. The Adaptive Life Cycle Phases 



 176

Speculate: Initiation and Planning 

There are five general steps in "speculating," although the word "steps" is somewhat of a 

misnomer, as each step may be revised several times during the initiation and planning phase. 

First, project initiation involves setting the project's mission and objectives, understanding 
constraints, establishing the project organization, identifying and outlining requirements, making 

initial size and scope estimates, and identifying key project risks. Because speed is usually a major 
consideration in using ASD, much of the project initiation data should be gathered in a 

preliminary JAD session. Initiation can be completed in a concentrated two- to five-day effort for 

a small- to medium-sized project or take two or three weeks for larger projects. During the JAD 
sessions, requirements are gathered in enough detail to identify features and establish a skeletal 

object, data, or other architectural model. 

Next, the time-box for the entire project is established based on the scope, feature set requirements, 

estimates, and resource availability that result from project initiation work. Speculating doesn't 
abandon estimating, it just means accepting that estimates are tenuous. 

The third step is to decide on the number of iterations and assign a time-box to each one. For a 
small- to medium-sized application, iterations usually vary from four to eight weeks. Some 

projects work best with two-week iterations, while others might require more than eight weeks 

(although this is rare). The overall project size and the degree of uncertainty are two factors that 
determine individual iteration lengths. 

After establishing the number of iterations and a schedule for each, the team members develop a 
theme or objective for each of the iterations. Just as it is important to establish an overall project 

objective, each iteration should have its own theme (this is similar to the Sprint Goal in Scrum). 
Each iteration delivers a demonstrable set of features to a customer review process, making the 

product visible to the customer. Within the iterations, "builds" deliver working features to a daily 

(or more frequent) integration process, making the product visible to the development team. 
Testing is an ongoing, integral part of feature development—not an activity tacked on at the end. 

Developers and customers assign features to each iteration. The most important criterion for 

feature assignment is that every iteration must deliver a visible, tangible set of features to the 

customer. In the assignment process, customers decide on feature prioritization, using feature 
estimates, risks, and dependency information supplied by the development team. A spreadsheet is 

an effective tool for feature-based iteration planning. Experience has shown that this type of 

planning—done as a team rather than by the project manager—provides better understanding of 
the project than a traditional task-based approach. Feature-based planning reflects the uniqueness 

of each project. 

Collaborate: Concurrent Feature Development 



 177

While the technical team delivers working software, project managers facilitate collaboration and 

concurrent development activities. For projects involving distributed teams, varying alliance 
partners, and broad-based knowledge, how people interact and how they manage 

interdependencies are vital issues. For smaller projects in which team members work in physical 
proximity, collaboration can consist of informal hallway chats and whiteboard scribbling. Larger 

projects, however, require additional practices, collaboration tools, and project manager 

interaction. 

Collaboration, an act of shared creation, is fostered by trust and respect. Shared creation 

encompasses the development team, customers, outside consultants, and vendors. Teams must 
collaborate on technical problems, business requirements, and rapid decision making. 

Learn: Quality Review 

Learning becomes increasingly difficult in environments in which the "get it right the first time" 
mantra dominates and development progresses in a linear, waterfall fashion. If people are 

continually compelled to get it right, they won't experiment and learn. In waterfall development, 

each phase completion discourages backtracking because there shouldn't be any mistakes. 
Learning from mistakes and experimentation requires that team members share partially 

completed code and artifacts early, in order to find mistakes, learn from them, and reduce the total 
amount of rework by finding small problems before they become large ones. Teams must learn to 

differentiate between shoddy work and half-done work. 

There are four general categories of things to learn about at the end of each development iteration: 

Result quality from the customer's perspective 

Result quality from a technical perspective 

The functioning of the delivery team and the practices team members are utilizing 

The project's status 

Getting feedback from the customers is the first priority in Adaptive projects. ASD's 

recommended practice for this is a customer focus group. Derived from the concept of marketing 
focus groups, these sessions are designed to explore a working model of the application and record 

customer change requests. They are facilitated sessions, similar to JAD sessions, but rather than 

generating requirements or defining project plans, customer focus groups are designed to review 
the application itself. Customers relate best to working software, not documents or diagrams. 

The second review area is technical quality. A standard practice for technical quality assessment is 

periodic technical reviews; pair programming accomplishes a similar result. Although code 

reviews or pair programming should be continuous, other reviews, such as an overall technical 
architecture review, may be conducted weekly or at the end of an iteration. 

The third feedback area is for the team to monitor its own performance. This might be called the 
people and process review. End-of-iteration mini-retrospectives help determine what's not 

working, what the team needs to do more of, and what the team needs to do less of. Retrospectives 
encourage teams to learn about themselves and how they work together. 

The fourth category of review is project status. This leads into a replanning effort for the next 
iteration. The basic status review questions are: Where is the project? Where is it versus the plans? 

Where should it be? Determining a project's status is different in a feature-based approach. In a 

waterfall life cycle, completed deliverables mark the end of each major phase (a complete 
requirements document, for example, marks the end of the specification phase). In a feature-based 

approach, completed features—working software—mark the end of each iteration. 



 178

The last of the status questions is particularly important: Where "should" the project be? Since the 

plans are understood to be speculative, measurement against them is insufficient to establish 
progress. The project team and customers need to continually ask, "What have we learned so far, 

and does it change our perspective on where we need to go?" 

Leadership-Collaboration Management 

Many companies are steeped in a tradition of optimization, efficiency, predictability, control, rigor, 

and process improvement. The emerging Information Age economy requires adaptability, speed, 
collaboration, improvisation, flexibility, innovation, and suppleness. "Successful firms in fiercely 

competitive and unpredictably shifting industries pursue a competing on the edge strategy," write 

Shona Brown and Kathleen Eisenhardt. "The goal of this strategy is not efficiency or optimality in 
the usual sense. Rather, the goal is flexibility—that is, adaptation to current change and evolution 

over time, resilience in the face of setbacks, and the ability to locate the constantly changing 

sources of advantage. Ultimately, it means engaging in continual reinvention" (Brown and 
Eisenhardt 1998).

What we name things is important. Traditional management has been characterized by the term 

Command-Control. It is reminiscent of the traditions of the military, Fredrick Taylor's scientific 

management, and William Whyte's "Organizational Man" of the 1950s. While new terms have 
spewed forth from the pages of the Harvard Business Review and management books—

empowerment, participative management, learning organization, human-centered management, 
and the like—none have encompassed the breadth, or depth, necessary for managing modern 

organizations. One alternative to Command-Control management is Dee Hock's "chaordic" style 

of management (Hock 1999), which I've called Leadership-Collaboration in ASD. It applies to 
both project and organizational management. 

Today, we need leaders more than commanders. "Commanders know the objective; leaders grasp 
the direction. Commanders dictate; leaders influence. Controllers demand; collaborators facilitate. 

Controllers micro-manage; collaborators macro-manage. Managers who embrace the Leadership-
Collaboration model understand their primary role is to set direction, to provide guidance, and to 

facilitate connecting people and teams" (Highsmith 2000). Leaders understand that occasionally 

they need to command, but that's not their predominant style. Leaders provide direction and create 
environments where talented people can be innovative, creative, and make effective decisions. 

The Leadership-Collaboration model encompasses the basic philosophical assertion that in 

turbulent environments, "adaptation" is more important than "optimization." 

However, becoming adaptive is not easy. The shift from optimization to adaptation—for an 
organization or a project team—requires a profound cultural shift. First, we must let go of our 

need to be tidy and orderly. Of course there are places where orderliness is necessary, but in 

general, the business world's pace of change precludes it. We need practices such as risk 
management and configuration control, but to assemble hundreds of practices under the roof of 

orderliness and statistically controlled rigor ignores the real world. 

My guideline for "barely sufficient" rigor in complex projects is "employ slightly less than just 

enough." Why? Complex problems—those characterized by high speed, high change, and 
uncertainty—are solved by creativity, innovation, good problem solving, and effective decision 

making. All of these capabilities suffer from an emphasis on rigorous, optimizing processes. To 

stabilize a process (make it repeatable), we endeavor to restrict inputs, transfer only the necessary 
information between processes (for efficiency), and strive to make the transformation as 

algorithmic as possible. But complex problems in today's organizations require the interaction of 

many people, diverse information, out-of-the-box thinking, quick reaction, and, yes, rigorous 
activity at times. Balancing at the edge of chaos provides just enough rigor to keep from plunging 



 179

into chaos, but not enough to quell creative juices. Chaos is easy—just do it. Stability is easy—

just follow the steps. Balancing is hard—it requires enormous managerial and leadership talent. 

There is a subtle difference between adapting and changing. Adapting is outwardly focused; it 

depends on a free flow of information from the environment (one's market) and realistic decisions 
based upon information and organizational values (goals). Many changes in organizations are in 

response to internal politics rather than external information. Adaptive organizations learn from 
the outside in rather from the inside out. 

Adaptation needs to happen at all organizational levels, which means free-flowing information 
and distributed decision making. It means that the traditional hierarchical management structure 

must share power with the horizontal, networked team structure. Hierarchical power is stabilizing; 
networked power is more adapting. Too much of one type of power breeds stagnation, while too 

much of the other breeds chaos. Sharing power is another fundamental characteristic of adap table 

organizations. 

In organizations, power defines who gets to make decisions. Over time, the pattern of decisions an 

organization makes determines success or failure. Control-oriented managers hoard decision 
making. New-age managers empower others to make decisions, often diffusing power so much 

that little gets done. Adaptive managers understand that making good decisions is more important 
than prescribing activities; further more, they understand when to make decisions and when to 

distribute them. It is a constant, delicate balancing act that depends on understanding patterns that 

work rather than processes that prescribe. 

Optimizing cultures tend to see the world as black or white. Adaptive cultures, on the other hand, 

recognize gray. They understand that planning is tenuous and control nearly impossible. Adaptive 
cultures understand that success evolves from trying a succession of different alternatives and 

learning from success and failure. Adaptive cultures understand that learning about what we don't 
know is often more important than doing things we already know how to do. The traditional, 

linear, Newtonian cause-and-effect perspective no longer adequately models the nature of our 

world. The concepts of complex systems, and the Leadership-Collaboration ideas about 
organizational and project management derived from them, provide a better sense of our economic 

environment. 

ASD's Contributions 

My hope for ASD is that it contributes to the discussion about the perspective, values, principles, 

and practices of Agile Software Development and, more critically, how project teams and 

organizations need to respond to our change-driven economy. 


