
Computer Languages, Systems & Structures 31 (2005) 17–33
www.elsevier.com/locate/cl

JavaLog: a framework-based integration of Java and Prolog
for agent-oriented programming

Anal+,a Amandi, Marcelo Campo, Alejandro Zunino∗

ISISTAN Research Institute. UNICEN University, Campus Universitario, Paraje Arroyo Seco,
Tandil (7000), Buenos Aires, Argentina

Received 6 November 2003; accepted 25 March 2004

Abstract

Intelligent agent development has imposed new challenges on the necessary language support. Object-oriented
languages have been proposed as an appropriate tool, although logic-oriented languages are more adequate for
managing mental attitudes. Multi-paradigm languages supporting encapsulation of actions, hiding of private
knowledge and 9exible manipulation of knowledge are, certainly, a good alternative for programming agents.
However, a unique language to support 9exible and e<cient development of multi-agent systems confronts
with the tradeo=s imposed by expressive power, e<ciency and support technology. An alternative to conciliate
these tradeo=s is not to think about a single language but an incrementally compatible family of agent-oriented
multi-paradigm languages. In this work we present an approach based on object-oriented framework technol-
ogy for integrating object and logic paradigms in such a way that new language features can be incrementally
added to the core language. This core language is based on logic modules integrated as object abstractions
in the object paradigm. JavaLog is a materialization of this framework integrating Java and Prolog. This core
was extended to provide multi-threading support, mobility and temporal-logic operators to Prolog. MoviLog,
the mobile part of the family provides a novel mobility mechanism, reactive mobility by failure, which enables
virtual Prolog databases distributed across Web sites.
c© 2004 Elsevier Ltd. All rights reserved.

Keywords: Multi-paradigm languages; Logic programming; Object-oriented programming; Agent-oriented programming;
Object-oriented frameworks; Intelligent agents

∗ Corresponding author. Tel.: +54-2293-440363; fax: +54-2293-440322.
E-mail addresses: amandi@exa.unicen.edu.ar (A. Amandi), mcampo@exa.unicen.edu.ar (M. Campo),

azunino@exa.unicen.edu.ar (A. Zunino).

1477-8424/$ - see front matter c© 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cl.2004.03.001

mailto:amandi@exa.unicen.edu.ar
mailto:mcampo@exa.unicen.edu.ar
mailto:azunino@exa.unicen.edu.ar

18 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

1. Introduction

Intelligent agent programming requires particular capabilities of a programming language. This
fact relies on both experiences gained developing applications with standard languages and from the
many proposed agent-oriented languages [1].

Many applications have been developed using object-oriented languages and characteristics of
these languages such as encapsulation and inheritance are considered important beneIts for agent
development [2,3]. On the other side, several proposals for agent languages such as Metatem
[4] or Gaea [5], among others, are supported on logic bases. A logic-oriented programming ap-
proach is a straightforward consequence of the requirement of managing mental attitudes, since
they are generally based on special logics deIned for that purpose [6]. For this reason, logic
languages such as Prolog may be considered an obvious way for representing and inferring re-
lationships among mental attitudes such as intentions, goals and beliefs. However, they present
several limitations for the deInition of action capabilities that object-oriented languages naturally
support. Usually, logic-based agent languages are enhanced with non-declarative features inher-
ent to other type of languages, such as objects, threads, etc. Thus, in order to have a language
that makes it easier the development of di=erent kind of agents, this language should provide, at
least, support to smoothly manage mental attitudes, actions, and private information in an integrated
way.

Certainly, multi-paradigm languages [7–11] integrating logic and object-oriented paradigms repre-
sent a convenient choice for the deInition of agent programming languages. However, the existing
proposals of multi-paradigm languages, particularly the ones proposed in the 1980s and their evo-
lutions, present limitations to satisfy the multiple requirements of modern multi-agent systems. In
addition, 9exibility to cope with speciIc language capabilities required by the many potential appli-
cation areas is an essential factor. Also, as e<ciency is involved, the use of a language providing
a set features not necessary for the domain can be negative, in terms of memory usage or speed,
despite the expressive power of the language. Therefore, the main challenge behind the design of
an e=ective language for agent programming relies on how to maintain the right balance among
expressive power, support technologies and functionality. We believe that object-oriented framework
technology [12,13] is the current most viable answer.

Under these considerations we have designed JavaLog, a language that integrates Java and Prolog,
enabling to exploit the advantages of both programming paradigms in an extensible way. JavaLog
is based on a Java framework that can be extended to incrementally add new functionalities to
the core language, giving a family of languages. The core language is based on logic modules
that encapsulate clauses for the manipulation of mental attitudes. These modules are used through
variables or directly in Java methods, deIning precise bridges between the two paradigms. Features
such as temporal Prolog extensions, concurrency or strong mobility, optional for some agent systems,
are provided as incremental extensions of the framework. Concurrency is supported by Java threads;
logic threads are also supported. Strong mobility is incorporated supporting logic modules that can
be transparently executed using clauses at di=erent sites.

In the remainder of the article, we will Irst describe our approach based on logic modules for agent
programming, then, in Section 3 we summarize relevant characteristics of the JavaLog language.
The JavaLog framework is brie9y described in Section 4. Then, Section 5 describes an extension of
the JavaLog framework to support concurrency. Mobility extensions and a novel form of mobility

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 19

are presented in Section 6. In Section 7 we describe a number of applications of the framework.
Section 8 discusses the most relevant related work. Finally, in Section 9 we conclude with a summary
and directions for future work.

2. Integrating logic and object paradigms

The object-oriented and logic paradigms work over di=erent conceptual worlds. The integration
of these worlds presents several problems, which are a consequence of the di=erent nature
of the computational elements involved and the way in which they are manipulated in each
paradigm.

The object-oriented paradigm works over objects, which are only accessed by methods. The logic
programming paradigm is based on logic clauses, which manipulate a deIned set of terms.

Our approach for agent-oriented programming deInes logic modules as the basic components
for paradigm integration. Java provides modularization from the object-oriented paradigm and,
in this context, logic modules are incorporated as modules encapsulating Prolog clauses. This
integration allows uniformity in both the deInition and manipulation of agent mental
states.

Logic modules are deIned as a set of Horn clauses following the deInition of O’Keefe [14]. This
gives two algebraic operators, union and overriding union [15] for combining logic modules.

Java classes can deIne part of their methods using logic modules and objects. Classes can also
deIne private modules in instance variables. A simple object associated with another object that
we call brain composes an agent. This brain of the object is an instance for the logic interpreter
responsible for the logic module management. This logic interpreter can be an instance of our Prolog
engine, any of the extensions that we provide, or one of the extensions that a developer can add for
particular proposes.

JavaLog allows us to deIne logic modules into Java variables or within Java methods. To clarify
the presentation, we will introduce an example, a salesman agent. It has the ability to select and
buy items based on user preferences. CommerceAgent is a class deIned for implementing this type
of agent.

In order to allow 9exibility on the article selection, a logic module deInes preferences. Below, a
logic module expresses the preferences of a user in buying a vehicle. Here, send is used for sending
a message to a Java object from a Prolog clause. For instance, send(vehicle,type,[],T) in Prolog is
equivalent to t = vehicle:type() in Java.

preference(vehicle, 10) :-
send(vehicle,type,[],T), T = car,
send(vehicle,model,[],M), M ¿ 2000,
send(vehicle,price,[],P), P ¿ 20000.

preference(vehicle, 9) :-
send(vehicle,type,[],T), T = car,
send(vehicle,model,[],M), M = 2001,
send(vehicle,size,[],S), S = big.

20 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

Now, we expose the CommerceAgent class written in JavaLog:

public class CommerceAgent {
private PlLogicModule userPreferences;
public CommerceAgent(PlLogicModule userPrefs) {
this.userPreferences = userPrefs;

}
....
public boolean buyArticle(Article art1,art2) {

userPreferences.enable();
?-preference(#art1#,Pref1).;
?-preference(#art2#,Pref2).;
if (Pref1 ¿ Pref2) {
buy(art1)

} else {
buy(art2)

};
userPreferences.disable();

}

We Irst deIne a variable userPreferences, which contains a logic module representing user prefer-
ences. Then we expose a method for helping to decide which of the two articles to buy, considering
the user preferences. Thus, the buyArticle method Irst places the userPreferences logic module as
available for the Prolog interpreter (the agent brain). Then, two Prolog queries are used to determine
the level of preference of each article. Each Prolog query is introduced by “?-”, following the usual
Prolog syntax. To evaluate preference(#art1#; Pref1), the clauses in userPreferences are used, since
they were explicitly enabled. Each query refers to the name of a Java variable enclosed by “#”. This
allows us to use existing Java objects inside a Prolog clause. Finally, the method ends disabling the
userPreferences logic module. This operation removes the logic module with the user preferences
from the agent brain.

We have shown a big picture of the ideas upon which JavaLog is based. The next sections
detail how the interaction between the paradigms is accomplished and what are the advantages
that JavaLog provides for agent-oriented programming.

3. Integration schemes

Several interaction alternatives among objects and logic modules are deIned in JavaLog. We
call these alternatives as interaction schemes. Interaction schemes are classiIed as integration by
reference, value and composition schemes. Reference specify the composition limits of di=erent
modules. Value specify the role of objects in logic modules and the role of logic variables in methods.
Composition speciIes how logic modules can be combined, expressing also the composition of a
knowledge base when a query is executed.

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 21

3.1. Integration by reference

Integration by Reference means that logic modules can be located in instance variables and as part
of methods. Thus, an agent can be designed as an object with private logic knowledge associated
with him. The action capabilities of the agent are represented by methods enabled for using logic
knowledge.

Considering the previous example, we can deIne another variable in the agent with di=erent
preferences that have to be applied when the user is experiencing bad Inancial times. In this logic
module, we can deIne that the user prefers to buy economy cars.

The fact that an agent records di=erent logic modules in variables does not imply that the agent
uses all these modules in the logic queries. The agent will only use the logic modules made available
to his brain. Thus, several combinations can be made when he is reasoning.

The deInition of logic modules within Java methods allows agent developers to specify mental
attitudes that are common to all the agents of such a class. Thus, for example, common preferences
on cars can be speciIed directly in a method instead of using variables.

Variables used in logic queries inside methods can also be used in the Java code of the rest of
the method.

Objects do not naturally have the capability of managing clauses. By using a logic language
interpreter integrated with our Java objects, this obstacle for programming agents has a solution.
An instance of a logic language interpreter associated with a Java object allows the deInition of
object-agents. These object-agents are composed of an object that can manage actions and commu-
nication messages and a logic interpreter that manages mental attitudes in a logic format.

In this sense, an object-agent can have private mental attitudes expressed in logic form, by means
of rules and facts, manipulated through methods of the object-agent class. An object-agent can have
zero, one or more instance variables referring to logic modules, allowing the separation of concerns
that the agent wishes to apply in di=erent contexts.

Our approach allows classes to deIne logic modules in methods. This enables classes to record
facts and rules that represent common attitudes for their instances. The logic modules deIned in
methods represent common knowledge of the objects of such a class. Those logic modules deIned
in the instance variables of objects represent proper mental attitudes of each object.

3.2. Integration by value

Integration by value speciIes communication bridges between both object-oriented and logic
paradigms. Thus objects can become Prolog facts and be part of a logic module. Also, clauses
can use objects as a special kind of term. Finally, logic terms used in clauses in a method can be
manipulated in the Java parts of the method and vice versa.

Single objects in JavaLog can become a fact receiving a message named asClause. For instance,
if an object of Person class with three instance variables with values Ann, 36 and engineer receives
that message the following clause is generated: person(herself, ‘Ann’, 36, engineer). This fact is
named as the receiver object class. The Irst argument is an object (indeed, a person object, the
receiver of the method), the other arguments are the contents of the instance variables of the receiver
object (name, age and profession in this case).

22 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

Following the second rule, clauses can use objects as a kind of term. This allows the direct
usage of objects together with their associated behavior (the methods deIned in their class and
super classes) inside logic code. For sending a message to objects from a logic code, a predeIned
clause named send is used. Thus, send(aPerson, age, [], A) into the body of a clause produces the
sending of the message age to the object aPerson without any argument, instantiating the variable
A with the number that returns that message.

Following the third rule, logic terms used in clauses in a method can be manipulated in all the
non-logic parts of the method and vice versa. Instance variables, class variables, and local variables
are available in methods. Logic variables are available in clauses. In JavaLog, any Java variable
available in a method can be used in any clause that is part of a logic module inner to that method.
Also, any variable used in a clause can be used in the method it is part of.

3.3. Integration by composition

Composition rules limit the possibilities of combining logic modules. Algebraic operators for
logic modules [15] have been applied from two di=erent perspectives. The Irst combination per-
spective establishes that modules referred by variables can be directly combined using predeIned
methods. From the second perspective, logic modules as part of a method can be combined by
inheritance.

An important point about the usage of variables referring to logic modules is that an object-agent
can have di=erent instance variables to register di=erent views of the same mental attitude. These
views can be used separately or can be combined using operators deIned for such goal. For example,
considering a PersonalAssistant class, it may have di=erent instance variables (a, b and c) to register
di=erent ways for evaluating changes of its schedule from some request. In this way, an assistant
agent, in front of a particular situation, can use one of these forms (achieved by one of these
variables) or some of its combinations.

The following operators have been deIned and implemented for combining logic modules referred
by variables:

• re-write: given two logic modules a and b, “a reWrite b” deInes a logic module that contains
all clauses deIned in b added to the clauses deIned in a whose head name is not the same as
some clause of b.

• plus: given two logic modules a and b, “a plus b” deIne a logic module which contains all clauses
of a and b.

The operator re-write follows the algebraic deInition of overriding union and the operator plus
follows the deInition of union.

On the other hand, logic modules can be deIned into methods. These logic modules can also
be combined using the same operators. Fig. 1 shows how these combinations can be done. Each
column shows each kind of combination. Both columns expose the method method() into a class A
and one subclass B.

The Irst column shows the application of the union operator. Each method deInes di=erent rules
for preferences. In this case, an object, instance of class A, uses the preference deIned between
{{ and }} in its queries after the invocation of that method. An object, instance of class B, has

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 23

A

 public void method()

B

 public void method()

...
{{ ... }};
...

...
{{...}};
super.method();

A

 public void method()

B

 public void method()

...
{{ ... }};
...

...
{% ... %};
...

Fig. 1. Operations with logic modules.

two options in terms of the deInitions of preferences to be used. The developer has the option of
explicitly invoking method() of the superclass, using in this case the addition of both deInitions.
The place of the invocation deInes the ordering of the clauses, thus it is important whether the
invocation is before or after the deInition of the local logic module. The second option is not to
invoke the method of the superclass, resulting in a complete redeInition of the method.

The second column shows the application of the operator overriding union. Here each method
also deInes di=erent rules for preferences. An object A has the same behavior as that exposed in
the Irst column, but an object B has the option of combining the logic modules deIned in method()
of the superclass and its own logic modules. The marks {% and %} indicate the modules of the
superclass must be re-written by the clauses between the special marks.

4. The framework

JavaLog is designed as an object-oriented framework [12,13] to add new language features as
needed. Fig. 2 shows a class diagram with the most important classes of the framework. The funda-
mental concept on which the language is based is the logic module, which is represented by the class
LogicModule. A LogicModule is a sequence of Prolog clauses (class PlClause). These fundamen-
tal constructs are extended to support extra features such as modules with temporal operators (class
TemporalLogicModule), clauses containing Java objects (PlJavaObj), etc. In a similar way, the core
JavaLog interpreter (class BasicLogicInterpreter) can be extended to support new language capabil-
ities such as concurrency (class MultiTreadedBraind) strong mobility (class MoviLogBrainEngine)
and integration with Web servers (class MARlet).

As an example of extensibility we will describe how to support a special type of mobile agents
named Brainlets [16]. First, we extend MultiThreadedBrain deIning a class Brainlet. For supporting
strong mobility of Brainlets, we have to be able to save/restore its execution state, suspend/resume
an executing Brainlet and take into account hops between sites when backtracking. In order to add
these capabilities to the language we add two methods getBrainState and setBrainState. The Irst
one returns the execution state of a Brainlet as a BrainState object containing the execution stack,
program counter and variables of the Brainlet. The second method is used to set the internal state
of a new Brainlet. To stop/resume the execution of a Brainlet we simply add an instance variable
executing to the class that is true when the Brainlet is executing and false otherwise. This variable
is modiIed by suspendExecution and resumeExecution. To handle the variable executing we just

24 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

LogicModule

PrologLogicModule

TemporalLogicModule RemoteLogicModule

BasicLogicInterpreter

PrologInterpreter

MultiThreadedBrain

PlObject

PlStruct PlVar

PlAtomic

PlNumber

PlAtom

PlJavaObj

PlStructArgs

PlClause

PlLogicModule

HttpServlet

MARlet

Brain

MobileBrainEngine

BrainState

Brainlet

 public void setBrainState(BrainState state)

 public BrainState getBrainState()

 protected boolean call(PlStackElement stack)

 protected boolean redo(PlStackElement stack)

 public void suspendExecution()

 public void resumeExecution()

module

0..*

modules
1..*

Fig. 2. Partial JavaLog class hierarchy.

override the methods call and redo which implement the depth Irst execution strategy of Prolog. In
these two methods we also add logic to handle distributed backtracking.

When a Brainlet wishes to migrate to a remote site it invokes its move method which executes
the following sentences:

suspendExecution();
BrainState state=getBrainState();
AgentManager.sendState(host, state);

At the remote site the following code is executed to resume the execution of the Brainlet:

Brainlet b = new Brainlet();
b.setBrainState(receivedState);
b.resumeExecution();

As shown above, the JavaLog framework can be extended with little e=ort. In opposition, most
WAM-based Prolog implementations are di<cult to extend due to their architectural design.

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 25

5. Thinking concurrently

Complex cognitive agents may need to think concurrently about their goals, choices and future
courses of action. For this, JavaLog was extended to provide a mechanism to create and synchronize
threads. We call this extension JavaLog?.

The clause thread(G1), G2; : : : ; Gn where Gi are goals, creates a new JavaLog? thread which
tries to prove G1 in a new thread, while the execution of G2; : : : ; Gn continues. For example,
thread(search(Pr, A)), searches a list of articles matching a number of preferences. If it succeeds
A it is instantiated with a list of articles that match Pr.

The wait(Variable) synchronization predicate allows the synchronized communication of two
threads by using JavaLog? variables. For example, an agent may concurrently search for three
articles matching di=erent preferences:

thread(search(Pr1, A)),thread(search(Pr2, B)),
thread(search(Pr3, C)),..., wait(A), wait(B), wait(C).

In order to obtain the results of the three searches, the agent has to wait for the instantiation of A,
B and C. The wait clause suspends the execution of the current thread until the associated variable
is instantiated by another thread.

In addition to these two mechanisms, JavaLog? handles concurrency at the level of logic modules
and provides facilities to prevent con9icts among threads. For example, a thread may remove a clause
that is needed by other threads, thus causing their failure. These con9icts can be handled by a locking
mechanism that prevents the removal of speciIc clauses. For example, lock(append/2) disallows the
removal of all the clauses append with two arguments, while unlock(append/2) performs the inverse.

6. Mobility

The huge amount of information available on the Internet became one of the main motivations
for the development of mobile agent technology [17,18]. Such a capability is particularly inter-
esting when an agent makes sporadic use of a valuable shared resource. But also, e<ciency can
be improved by moving agents to a host to query a large database, as well as, response time and
availability would improve when performing interactions over network links subject to long delays
or interruptions of service. For this, a further extension of JavaLog? was developed, called MoviLog
[16].

MoviLog is, essentially, an extension of JavaLog? to support mobile agents across Web servers.
MoviLog implements a strong mobility model for a special type of logic modules, called Brainlets.
The MoviLog inference engine is able to, besides processing several concurrent threads, restart the
execution of an incoming Brainlet at the point where it migrated.

In order to enable mobility across Web sites, each Web server belonging to a MoviLog network
must be extended with MARlets (Mobile Agent Resources). A MARlet extends the Java servlets
support encapsulating the MoviLog inference engine and providing services to access it. In this way,
a MARlet represents a Web dock for Brainlets. Additionally, a MARlet is able to provide intelligent
services under request, such as adding and deleting logic modules, activating and deactivating logic

26 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

modules, and answering logic queries. In this sense, a MARlet can also be used to provide inferential
services to Web applications or agents.

From the mobility point of view, MoviLog provides the support to implement Brainlets with
typical pro-active capabilities, but more interesting yet, it implements a mechanism for transparent
reactive mobility by failure.

6.1. Proactive mobility

MoviLog adds the move to built-in predicate, which allows a Brainlet to autonomously migrate to
another host. Before transport, the MoviLog engine in the local host serializes the Brainlet and its
state—i.e. its knowledge base and code, current goal to satisfy, instantiated variables, backtracking
points, etc. Then, it sends the serialized form to its counterpart on the destination host. Upon receipt
of an agent, the MoviLog machine in the remote host reconstructs the Brainlet and the objects it
refers to, and then it resumes its execution. Eventually, after performing some computation, the
Brainlet could return to the originating host calling the return built-in predicate.

The following example presents a simple Brainlet for e-commerce, which has the goal of Inding
and buying a given article in the network according to the user’s preferences.

Brainlet CustomerBrainlet = {
sites([www.offers.com,www.freemarket.com,...]).
preference(car,[ford, Model, Price]) :-
Model > 1998, Price < 60000.

preference(tv,[sony, Model, Price]):-
Model = 21in, Price ¡ 1500.

lookForOffers(A,[], ,[]).
lookForOffers(A,[S| R], [O|RO], [O| Roff]):-

move to(S), article(A, Offer, Email),
O= (S,Offer,Email), lookForOffers(A, R, RO,ROff).

lookForOffers(A,[S| R], [O|RO], [O| Roff]):-
lookForOffers(A, R, RO,ROff).

buy(Art):-
sites(Sites),
lookForOffers(Art, Sites,R,Offers),
selectBest(Offers, (S,O,E)), move to(S),
buy article(O,E), return.

?- buy(#Art).
}

The buy clause look for o=ers available in the di=erent sites, select the best and calls a generic
predicate to buy the article (this process is not relevant here). The lookForO<ers predicate imple-
ments the process of moving around the deIned sites looking for the available o=ers for the article
(we assume that we get the Irst o=er). If there is no o=er in the current site, the Brainlet goes to
the next one in the list.

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 27

Although proactive mobility provides a powerful tool to take advantage of network resources, in
the case of Prolog, it also adds an extra complexity due to its procedural nature. That is, mobile
Prolog programs cannot necessarily be built in the declarative way as a normal Prolog program is,
forcing the implementation of solutions that depend on the mobility aspect. Particularly, when the
mobile behavior depends on the failure or not of a given predicate solutions tend to be more com-
plicated. This fact led us to develop a complementary mobility mechanism, called reactive mobility
by failure.

6.2. Reactive mobility by failure

Reactive Mobility by Failure (RMF) is a novel mobility mechanism which aims at reducing
the e=ort of developing mobile agents by automating some decisions about mobility [16]. RMF
is based on the assumption that mobility is orthogonal to the rest of attributes that an agent may
possess (intelligence, agency, etc.) [19]. Under this assumption it is possible to think of a sep-
aration between these two functionalities or concerns at the implementation level [20]. RMF ex-
ploits this separation by allowing the programmer to focus his e=orts on the stationary functionality,
and delegating mobility issues on a distributed multi-agent system that is part of the MoviLog
platform.

Agents that use the underlying RMF mechanism are called Brainlets. A Brainlet is composed
by Prolog clauses, Java objects and a number of protocols. A protocol is a declaration of the
interface used to access a resource across the network. By resource we mean, for example, data
(Prolog clauses, databases, Web pages, Java objects, etc.) or code (Prolog clauses, Web accessible
programs, Java methods, etc.).

When a predicate of a Brainlet declared as a protocol fails (it is not possible to evaluate that
predicate at the current site, or there are no more choices left), RMF transparently moves the
Brainlet to another site having deInitions for such a predicate and continues the normal execution to
try to Ind a solution (Fig. 3). The implementation of this mechanism requires the MoviLog inference
engine, named MARlet, to know where to send the Brainlet which implies that the MARlet has to
know the protocols available at every site of the network. In order to maintain this information,
some of the mobility agents named PNS (protocol name servers) discover MARlets and keep up to
date the protocols o=ered by each site.

host1

(iii) strong migration

ServerBrainlet

host2

Brainlet
DB(i) Requested access

to a non-local resource

stationary agents stationary agents

(ii) move to host2

non-local interactions
between mobility agentsMoviLog

Platform

Mobile
Agents

Fig. 3. Reactive mobility by failure.

28 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

PROTOCOLS
article(car, [¨FORD ESCORT CLX¨, blue,1998, 15000], compras@vendotodo.com)
article(car, [¨FORD ESCORT LX¨, white, 1999, 15500], compras@vendotodo.com)
article(car, [¨FORD Ka¨, red, 2000, 11200], compras@vendotodo.com)
........

article(car, [¨GM Corsa¨, green, 1997, 12000], compras@carone.com)
article(car, [¨Volskwagen Polo ¨, blue, 1997, 10500], compras@carone.com)
article(car, [¨Renault Twingo¨, 2000, 13400], pink, compras@carone.com).

Protocol Name Server

article(car, [¨GM Corsa¨, green, 1997, 12000], compras@carone.com)
article(car, [¨Volskwagen Polo ¨, blue, 1997, 10500], compras@carone.com)
article(car, [¨Renault Twingo¨, 2000, 13400], pink, compras@carone.com)

article(car, [¨GM Corsa¨, green, 1997, 12000], compras@carone.com)
article(car, [¨Volskwagen Polo ¨, blue, 1997, 10500], compras@carone.com)
article(car, [¨Renault Twingo¨, 2000, 13400], pink, compras@carone.com)

MoviLog Site 2

MoviLog Site 1

MoviLog Site 3

MoviLog Site 4

Fig. 4. MoviLog virtual database.

In addition, MoviLog extends the normal deInition of a logic module with protocol sections,
which deIne predicates that can be shared across the network:

Brainlet CustomerBrainlet = {
PROTOCOLS
article(A, Offer, Email).

...
}
Protocol deInitions create the notion of a virtual database distributed among several Web sites

as shown in Fig. 4. When a Brainlet deInes a given protocol predicate in a host h, the MoviLog
engine informs the PNS, which in turn inform the rest of registered servers that the new protocol is
available in h. In this way, the database of a Brainlet can be deIned as a set D= {DL; DR}, where
DL is the local database and DR is a list of sites that o=er the same protocol clause as the current
goal g. Now, in order to probe g the interpreter has to try all the clauses c∈DL such that the head
of c uniIes with g. If none of those lead to probe g, then it is necessary to try to probe g from one
of the non-local clauses in DR. To achieve this, MoviLog transfer the running Brainlet to one of the
hosts in DR by using the same mechanism used for implementing proactive mobility. Once at the
remote site, the execution continues to try the new backtracking point. However, if the interpreter at
the remote site fails to probe g, it continues with the next host in DR. When no more possibilities
are available, the Brainlet is moved to its origin.

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 29

The following example shows the implementation of the previous one combining both mobility
mechanisms:

Brainlet CustomerBrainlet = {
PROTOCOLS
article(A, Offer, Email).

CLAUSES
preference(car,[ford, Model, Price]) :-
Model ¿ 1998, Price ¡ 60000.

preference(tv,[sony, Model, Price]) :-
Model = 21in, Price ¡ 1500.

lookForOffers(A, [O|RO], [O| Roff]):-
article(A, Offer, Email),
assert(offer((thisSite,Offer,Email)),
fail.

lookForOffers(A, ,Offers):-!,
findall(offer(S,O,E), Offers).

buy(Art):-
lookForOffers(Art,R,Offers),
selectBest(Offers, (S,O,E)),
move to(S),
buy article(O,E),
return.

?- buy(#Art).
}
As can be noted, the solution using RMF looks much like a common Prolog program. This solution

collects, through backtracking, the matching articles from the database until no more articles are left.
The article protocol causes the Brainlet to try all the sites o=ering the same protocol before returning
to the origin site to collect (=ndall) all the o=ers in the local database of the Brainlet. Once the best
o=er is selected the Brainlet proactively moves to the site o=ering that article to buy it. Certainly,
this solution is simpler than the one using just proactive mobility.

6.2.1. Backtracking and consistency issues
Mobile Prolog, and particularly, the RMF mobility model generates several tradeo=s related to

standard Prolog execution semantics. Backtracking is one of them. When a Brainlet moves around
several places, many backtracking points can be left untried in such places, and the question is how
the backtracking mechanism should proceed. The solution adopted by MoviLog resides in the PNS.
The PNS provides a sequential view of the multiple databases and is used by the routing mechanism
to go through the distributed execution tree.

Also the evaluation of MoviLog code in a distributed manner may lead to inconsistencies. For
example, MARlets can enter or leave the system, may alter their protocol clauses or modify their
databases. At this moment, MoviLog deInes a policy that consists on updating the local view of
a Brainlet when it arrives to a host. This involves querying the PNS to obtain a list of hosts

30 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

implementing a given protocol clause and querying the local MARlet in order to obtain a list of
clauses matching the protocol clause being evaluated.

7. Experimental results

JavaLog has been used in several agent-related research projects. For example, NewsAgent [21] is
an intelligent agent that has the capability of generating personal newspapers from particular users’
preferences extracted by observing users’ behavior. This agent uses static word classiIcation and
case-based reasoning for dynamic sub-classiIcation of interesting documents.

The QueryGuesser Agent [22] is an interface agent that assists users who work with database
systems. QueryGuesser has the capability of managing personalized queries in a relational database
system, according to the interests and habits of a given user.

Obelix 1 is an intelligent meeting scheduler that is able to autonomously organize users’ activities
taking into account their preferences, con9ict among groups, travel distances, etc.

Brainstorm/J [23] is an object-oriented framework written in JavaLog which provides generic
abstractions for building multi-agent systems. These abstractions deInes typical agent behavior,
such as perception, reaction, interaction, mobility, deliberation, etc. The main di=erence between
Brainstorm/J and tools such as AgentBuilder [24], BDIM [25] and ZEUS [26], to name a few, is its
ability to be tailored to build speciIc applications and extended with new functionality by reusing the
abstractions, thus considerably reducing the development e=ort. In addition, Brainstorm/J provides
mechanisms to transparently add agent abilities to any Java application.

8. Related work

Several languages have been proposed for programming agents [4,7,27–30]. Some of them use
some object-oriented concepts in a logic context. For example, Concurrent Metatem [4,28] uses a
set of rules based on temporal logic to represent an object’s internal deInition. Daisy [7] takes an
object-oriented approach for building agents that communicate and derive future actions based on
the speech act theory.

From the object-oriented perspective, both language extensions and frameworks for agent devel-
opment have been proposed. Some of the proposed languages (i.e., [27,31]) do not take into consid-
eration the logic fundamentals of mental attitudes. This lack could be solved using some practical
views of architectures on mental attitudes, but the e=ort of materializing those practical approaches
would have a high cost. On the other hand, agent frameworks such as [32–34], provide architec-
tural options to build agent systems, but support few agent concepts thus failing when intelligent or
rational behavior is required.

Our approach tries to take advantage of both kinds of proposals, deIning an integration of both
paradigms, and being 9exible in order to accommodate di=erent requirements.

1 http://www.exa.unicen.edu.ar/∼azunino/obelix.html

http://www.exa.unicen.edu.ar/~azunino/obelix.html

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 31

9. Conclusions

In this article, an approach for the development of intelligent agents from the programming point
of view has been presented. This approach is based on the fact that the object-oriented paradigm
is a good paradigm for programming agents but it presents some problems in the manipulation of
mental attitudes. The problem of the manipulation of mental attitudes, usually treated on speciIc
logic formalisms, is solved by the use of logic programming. In short, we present a multi-paradigm
approach for programming agents.

This particular approach and its materialization on the JavaLog language allows 9exibility for
many design components. One of them is based on the fact that our Prolog interpreter has been
implemented in the Java language thus allowing extensions to this interpreter. These extensions can
support, for example, some particular management of mental attitudes and time.

JavaLog has been used in several developments showing cost advantages. For example, the im-
plementation of an agent that applies a least commitment planning algorithm [35]. The main part
of the algorithm was developed using Prolog, but an object modeled the graph of causal links. This
implementation was contrasted with an initial implementation in Prolog. This analysis, considering
these two implementations, shows that the planning algorithm using the integration runs 10 times
faster than the implementation in pure Prolog [36]. The di=erence is based on the analysis of the
graph, which in the multi-paradigm implementation uses Java.

We are developing new agents based on JavaLog. For example, we are testing an agent for
analyzing electronic newspaper pages [21] and building 3D visualizations of software requirements
speciIed in Z [37].

References

[1] Dix J, Leite JA, Satoh K, editors. Computational logic in multi-agent systems, Datalogiske skrifter, vol. 93. Roskilde,
Denmark, August 1, 2002.

[2] Crnogorac L, Rao AS, Ramamohanarao K. Analysis of inheritance mechanisms in agent-oriented programming. In:
Proceedings of the 15th International Joint Conference on ArtiIcial Intelligence, IJCAI. Los Altas, CA: Morgan
Kaufmann Publishers, 1997. p. 23–29, 647–54.

[3] Shoham Y. An overview of agent-oriented programming. In: Software agents, Menlo Park, USA, AAAI; 1997.
[4] Fisher M. A survey of concurrent METATEM—the language and its applications. In: Gabbay DM, Ohlbach HJ,

editors. Temporal logic—Proceedings of the First International Conference, Lecture Notes in ArtiIcial Intelligence,
vol. 827. Heidelberg, Germany: Springer; 1994, p. 480–505.

[5] Noda I, Nakashima H, Handa K. Programming language gaea and its application for multiagent systems. In:
Workshop on Multi-Agent System and Logic Programming, December 1999.

[6] Dix J. The logic programming paradigm. AI Communications 1998;11(3):39–43 (Short version in Newsletter of
ALP 1998;11(3):10–14).

[7] Poggi A. Daisy: an object-oriented system for distributed artiIcial intelligence. In: Proceedings of the ECAI-94
Workshop on Agent Theories, Architectures, and Languages, 1994.

[8] Van Roy P, Haridi S. Mozart: a programming system for agent applications. In: International Workshop on Distributed
and Internet Programming with Logic and Constraint Languages, November 1999. Part of International Conference
on Logic Programming (ICLP 99).

[9] Yamazaki K, Yoshida M, Amagai Y, Takeuchi I. Implementation of logic computation in a multi-paradigm language
tao. Information Processing Society of Japan 2001;41(1):142–57.

[10] Lee JHM, Pun PKC. Object logic integration: a multiparadigm design methodology and a programming language.
Computer Languages 1997;23(1):25–42.

32 A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33

[11] Ng KW, Huang L, Sun Y. A multiparadigm language for developing agent-oriented applications. In: Proceedings
of Technology of Object-Oriented Languages and Systems (TOOLS), Beijing, China, September. New York: IEEE;
1998.

[12] Fayad ME, Schmidt DC. Object-oriented application frameworks (special issue introduction). Communications of
the ACM 1997;40(10):39–42.

[13] Fayad ME, Johnson R, editors. Domain-speciIc application frameworks: frameworks experience by industry. New
York: Wiley, 1999.

[14] O’Keefe RA. Towards an algebra for constructing logic programs. In: Proceedings of the International Symposium
on Logic Programming. IEEE Computer Society, Technical Committee on Computer Languages. Rockville, MD:
The Computer Society Press, July 1985.

[15] Bugliesi M, Lamma E, Mello P. Modularity in logic programming. The Journal of Logic Programming 1994;19&
20:443–502.

[16] Zunino A, Campo M, Mateos C. Simplifying mobile agent development through reactive mobility by failure. In:
Bittencourt G, Ramalho G, editors, Advances in artiIcial intelligence. Lecture Notes in Computer Science, vol. 2507.
Berlin: Springer; Novermber, 2002. p. 163–174.

[17] Lange DB, Oshima M. Seven good reasons for mobile agents. Communications of the ACM 1999;42(3):88–9.
[18] Gray RS, Cybenko G, Kotz D, Rus D. Mobile agents: motivations and state of the art. In: Bradshaw J, editor.

Handbook of agent technology. Menlo Park, USA/Cambridge, MA: AAAI/MIT Press; 2001.
[19] Bradshaw JM. Software agents. Menlo Park, USA: AAAI Press; 1997.
[20] Garcia A, Chavez C, Silva O, Silva V, Lucena C. Promoting advanced separation of concerns in intra-agent and

inter-agent software engineering. In: Workshop on Advanced Separation of Concerns in Object-Oriented Systems at
OOPSLA’2001, October 2001.

[21] Cordero D, Rold+an P, Schia<no S, Amandi A. Intelligent agents generating personal newspapers. In: Proceedings
of the International Conference on Enterprise Information Systems, Portugal, March 1999.

[22] Schia<no S, Amandi A. User proIling with case-based reasoning and bayesian networks, in: Proceedings of
the Seventh Iberoamerican Conference on ArtiIcial Intelligence (IBERAMIA 2000) and the 15th Brazilian AI
Symposium (SBIA 2000), Atibaia, São Paulo, Brasil, November 2000.

[23] Zunino A, Amandi A. Building multi-agent systems from reusable software components. In: Alvares LO, editor.
Proceedings of the Third Workshop in Distributed ArtiIcial Intelligence and Multi-Agent Systems (3WDAIMAS)
held in conjunction with the Seventh Iberoamerican Conference on ArtiIcial Intelligence (IBERAMIA 2000) and
the 15th Brazilian AI Symposium (SBIA 2000), Atibaia, São Paulo, Brasil, November 2000.

[24] Reticular Systems Inc., AgentBuilder: an integrated toolkit for constructing intelligent software agents, White Paper,
February 1999. http://www.agentbuilder.com.

[25] Busetta P, Ramamohanarao K. The BDIM agent toolkit design. Technical Report 97/15, Departament of Computer
Science, University of Melbourne, 1997.

[26] Nwana H, Ndumu D, Lee L, Collis J. ZEUS: a tool-kit for building distributed multi-agent systems. Applied ArtiIcal
Intelligence Journal 1999;13(1):129–86. http://www.labs.bt.com/projects/agents/zeus/index.htm.

[27] Denti E, Omicini A. Engineering multi-agent systems in luce. In: Proceedings of the Workshop on Multi-Agent
Systems in Logic Programming—MAS?99 (in conjunction with the International Conference on Logic Programming
1999), New Mexico, USA, December 1999.

[28] Kellett A, Fisher M. Coordinating heterogeneous components using executable temporal logic. In: Meyer J-J, Treur J,
editors. Agents, reasoning and dynamics, Series of Handbooks in Defeasible Reasoning and Uncertainty Management
Systems, vol. 6. Dordecht: Kluwer Academic Publishers: 2001.

[29] Weerasooriya D, Rao A, Ramamohanarao K. Design of a concurrent agent-oriented language. In: Wooldridge MJ,
Jennings NR, editors. Proceedings of the ECAI-94 Workshop on Agent Theories, Architectures and Languages:
Intelligent Agents I, Lecture Notes in ArtiIcial Intelligence, vol. 890. Berlin: Springer, August 1995, 386pp.

[30] Levesque HJ, Reiter R, Lesp+erance I, Lin F, Scherl RB. GOLOG: a logic programming language for dynamic
domains. Journal of Logic Programming 1997;31(1–3):59–83.

[31] Tarau P. Jinni: a lightweight java-based logic engine for internet programming. In: Sagonas K, editor. Proceedings
of JICSLP’98 Implementation of LP languages Workshop, Manchester, UK, June 1998, invited talk.

[32] Graham J, Decker K. Towards distributed, environment centred agent framework. In: Proceedings of Agent Theory
and Languages (ATAL) ’99, July 1999.

http://www.agentbuilder.com
http://www.labs.bt.com/projects/agents/zeus/index.htm

A. Amandi et al. / Computer Languages, Systems & Structures 31 (2005) 17–33 33

[33] Kendall EA, Krishna PVM, Pathak CV, Suresh CB. A framework for agent system. In: Fayad ME, Schmidt DC,
Johnson RE, editors. Implementing applications frameworks: object oriented frameworks at work. New York: Wiley;
1999.

[34] Lange DB, Oshima M. Programming and deploying mobile agents with java aglets. Reading, MA, USA:
Addison-Wesley; September 1998.

[35] Weld DS. An introduction to least commitment planning. AI Magazine 1994;15(4):27–61.
[36] Amandi A, Iturregui R, Zunino A. Object-agent oriented programming, Electronic Journal of Sociedad Argentina de

Inform+atica e Investigaci+on Operativa (EJS) also in Second Argentine Symposium on Object Orientation (ASOO’98)
1999; 2(1):5–16. ISSN 1514-6774.

[37] Teyseyre A. A 3d visualization approach to validate requirements. In: Congreso Argentino de Ciencias de la
Computaci+on, October 2002.

Anal)*a Amandi received a Ph.D. Degree in Computer Science from the Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil in 1997 and the Computer Science degree from the UNLP University, La Plata, Argentina in 1990.
Currently she is a Professor at Computer Science Department and head of the agent group of the ISISTAN Research
Institute of the UNICEN University at Tandil, Argentina. She has over 30 papers published in conferences and journals
about agents. Her research interests includes interface agents and software architecture.

Marcelo Campo received a Ph.D. Degree in Computer Science from the Universidade Federal do Rio Grande do Sul,
Porto Alegre, Brazil in 1997 and the Systems Engineer degree from the UNICEN University, Tandil, Argentina in 1988.
Currently he is an Associate Professor at Computer Science Department and Head of the ISISTAN Research Institute
of the UNICEN University at Tandil, Argentina. He is also a research fellow of the National Council for ScientiIc and
Technical Research of Argentina (CONICET). He has over 50 papers published in main conferences and journals about
software engineering topics. His research interests includes intelligent aided software engineering, software architecture
and frameworks, agent technology and software visualization.

Alejandro Zunino received a Ph.D. Degree in Computer Science from the Universidad Nacional del Centro (UNICEN),
Tandil, Argentina, in 2003, his MSc. in Systems Engineering in 2000 and the Systems Engineer degree in 1998. He is
a full time research assistant at the UNICEN. He has published over 15 papers in journals and conferences. His current
research interest focus on development tools for intelligent agents, mobile agents and logic programming.

	JavaLog: a framework-based integration of Java and Prologfor agent-oriented programming
	Introduction
	Integrating logic and object paradigms
	Integration schemes
	Integration by reference
	Integration by value
	Integration by composition

	The framework
	Thinking concurrently
	Mobility
	Proactive mobility
	Reactive mobility by failure
	Backtracking and consistency issues

	Experimental results
	Related work
	Conclusions
	References

