
Building Object-Agents from a Software Meta-Architecture

Analía Amandi and Ana Price

Universidad Nac. del Centro de la Pcia. de Bs.
As. - Fac. de Cs. Exactas - ISISTAN -

San Martin 57 - (7000) Tandil - Bs. As.
Argentina

email: amandi@exa.unicen.ar

Universidade Federal do Rio Grande do
Sul - Instituto de Informática

Caixa Postal 15064 - Porto Alegre - RS
Brasil

email: anaprice@inf.ufrgs.br

Abstract. Multi-agent systems can be viewed as object-oriented systems in which their

entities show an autonomous behavior. If objects could acquire such skill i n a flexible

way, agents could be built exploiting object-oriented techniques and tools.

There are several ways for building agents from objects: defining common interfaces and

behavior in abstract superclasses, wrapping objects with agent behavior using

composition techniques, etc. However these ways present problems for becoming objects

in agents and for adapting the behavior assigned to agents, especially whether it is

required in a dynamic way.

This paper analyzes these problematic alternatives and presents another one in which

agent characteristics (such as perception, communication, reaction, deliberation and

learning) can be dynamically added, deleted, and adapted to objects using a particular

computational reflection form achieved by meta-objects.

Keywords: software architectures, agent-oriented programming.

Building Object-Agents from a Software Meta-Architecture

Abstract. Multi-agent systems can be viewed as object-oriented systems in which their

entities show an autonomous behavior. If objects could acquire such skill in a flexible

way, agents could be built exploiting object-oriented techniques and tools.

There are several ways for building agents from objects: defining common interfaces and

behavior in abstract superclasses, wrapping objects with agent behavior using

composition techniques, etc. However these ways present problems for becoming objects

in agents and for adapting the behavior assigned to agents, especially whether it is

required in a dynamic way.

This paper analyzes these problematic alternatives and presents another one in which

agent characteristics (such as perception, communication, reaction, deliberation and

learning) can be dynamically added, deleted, and adapted to objects using a particular

computational reflection form achieved by meta-objects.

Keywords: software architectures, agent-oriented programming.

1. INTRODUCTION

Agent-oriented and object-oriented programming work on cooperative entities. These

entities have limited competence, which is defined by a set of actions that are able to

execute. However, the following definitions show an important difference between the

entities that each one of the paradigms work on.

An agent is an autonomous entity that has action capabilities, which are used in a non-

deterministic behavioral way and internal knowledge for supporting their decisions and

the execution of its behavioral capabilities. An object is an entity that has action

capabilities defined in a deterministic way and internal knowledge for supporting the

execution of its behavioral capabilities.

Objects and agents define a well-bounded behavior but there is one difference: objects

use it in given ways and agents can decide the way they take. Thus, additional

characteristics must be designed for achieving object-agents: communication among

agents, perception of changes in the environment, and decision processes related to what

to do next.

Communication capabilities determine how agents of different types can communicate

among them. Examples of communication performatives: achieve (aGoal), askIf

(aQuery), askAll (aQuery), etc.

Perception capabilities allow an agent to know facts without receiving any information

from communications. Perception capabilities allow an agent to observe activities

performed by other agents (a conversation among agents, transference of information

between agents, destruction of agents, agents changing of communities, etc.) and

environment changes (i.e. external sensors becoming enabled, locking of internal

structures, etc.).

Decision capabilities determine the course of action that an agent takes in a given point

of time. Such course of action can be characterized as reactive or deliberative

[Demazeau 91]. Reactive behavior allows agents to act without thinking before act.

Deliberative behavior shows a meditative selection of a particular set of actions.

We can recognize three behavioral levels in agents (see Figure 1). The lower level shows

us what an agent can do in terms of actions. An agent robot, for example, could execute

the following actions: go, turnLeft, turnRight, etc. This level represents the characteristic

behavior of objects.

The next level represents social capabilities inherent to agents. Objects only can pass

messages, they can not make a real communication as agent can do. Agents

communicates with other agents requesting help to achieve a given goal, giving notice of

a trouble, advising about a problem, giving information, etc. Also, agents can observe

events happened in their environment.

The third level represents the set of decision capabilities that are used for agents to

determine actions to execute. To do this, the observed events and the received

communications are considered basic information for such decision processes.

Figure 1 - Agent behavioral levels.

Actions showing what the agent can do

Social capabilities: perception and communication

Decision capabilities: reaction and deliberation

Object behavior

A multi-agent system can in summary be considered as an object-oriented system in

which object-agents has associated extra capabilities. This idea is not new, [Gasser 92]

[Shoham 93] have shown the potential characteristics of the object-oriented paradigm for

building agents. However, there are several alternative ways in which these extra

capabilities are associated to simple objects.

This paper analyses several alternatives concluding with the presentation of a software

architecture named Brainstorm. This architecture allows objects be the main support of

agents and meta-objects be the flexible way for adding the mentioned agent-specific

capabilities.

The breakdown of the paper is as follows. Section 2 identifies the advantageous and

troubles of several agent design alternatives based on object-oriented concepts. Section 3

presents an architecture based on the meta-object concept. Section 4 relates results and

experiences with the architecture. Sections 5 and 6 expose related works and

conclusions.

2. AGENTS AS OBJECTS

An obvious way for designing different agent types in an object-oriented context is the

usage of classes representing each type of agent. This design way has been used in the

design of several agent-oriented languages such as AgentSpeak [Weerasooriya 95],

Daisy [Poggi 95] and CooL [Kolb 95].

An example of an object-agent is a robot. It can be designed through a class Robot which

has defined methods for acting, communicating, perceiving, reacting, deliberating,

learning and managing mental attitudes.

Using inheritance for designing agents, the common behavior of any agent type could be

grouped in a class named by Agent. We can produce different types of agents by the

specialization of this class. However, if inheritance is the only design technique used, the

agent design presents several problems.

The main problems are (i) the explosion of the number of classes and (ii) duplicated

code. The cause is that specific agents combine particular communication languages,

particular decision algorithms and ways of behavior (reactive, deliberative or hybrid) in

different ways. Communication languages, decision algorithms and ways of behavior

must be duplicated in different point of the hierarchy (simple inheritance case) or

complex hierarchies must be managed (multiple inheritance case). Static relationships

among classes stated by inheritance produce such problems.

By introducing composition, dynamic alterations of structure and behavior of agents

become possible. For example, the decision mechanisms used by agents can be flexibly

designed through composition, avoiding code duplication and a large number of classes.

Figure 2 shows as agents can be dynamically built combing parts. Each part adds new

functionality to a basic agent. In the Figure, a particular communication language,

reaction functionality, deliberation functionality associated with a particular set of

decision mechanisms are wrapping agent basic functionality.

Figure 2 - An agent design using inheritance and composition.

Each agent can use different decision mechanisms any time and combine these

mechanisms by composition. The design of such mechanisms achieves major

advantageous combining inheritance and composition. Inheritance for adding new

mechanism by class specialization. Composition for linking agents with decision

strategies in a dynamic way.

Regarding perception design, we have to allow object-agents observing changes

produced on their environment. This imply that agents must observe messages being

sent among agents and objects.

As simple objects can not interfere in the sent messages, a simple solution is that agents

and objects inform to the interested agents each one of their moves by messages. In this

way, the natural observation of the environment looking for changes of interest become

in a controlled announce of changes where the involved entities inform the changes they

produce.

With this agent design, it is possible dynamically to alter agent behavior. However, the

design presents some troubles: agent developers must manage each relation among agent

Basic
agent

Reaction

Planning LearningCBR . . .

DecisionStrategy

PlanningCBR

an agent

Communication
Language X

Deliberation

parts and the perception design forces changes in code of the object. The administration

of parts involves control of the activation order (i.e. react before deliberate) and implicit

delegation of execution responsibility. The perception solution imposes changes in the

basic code of agents because of the announces, avoiding the full possibility of dynamic

changes in the observation targets.

Another alternative, which is the support of our agent architecture, is the usage of

computational reflection by meta-objects. Computational reflection is an activity carried

out by a computational system when it executes computations on its own computation

[Maes 87]. From this point of view, a reflective system is divided in two levels: an object

level and a reflective level. The object level manages the actions and data of the

application domain. The reflective part, located in a meta-level, manages actions and data

of the object level.

Figure 3 - Meta-objects.

Figure 3 shows an example of computational reflection from an object-oriented point of

view. In the object-oriented approach, the concept of meta-object materializes the

concept of computational reflection. The example shows as a meta-object interferes in

the computation of the messages received by a given professor. The meta-object prints

the sender, the name, and the arguments of each message received and so returns the

control to the professor.

Coming back with the agent design, the problems found using only inheritance and

composition can be solved using computational reflection techniques. Meta-objects can

interfere in the passive behavior of objects turning it an autonomous behavior.

a professor

a secretary

concepts(C)

concepts()

handle(message)
 message sender print.
 message name print.
 message arguments print.
 message continue.

a meta-object

concepts(aCourse)
 ^aCourse results

Therefore, a multi-agent system can be considered as an object-oriented system which

has associated to it a meta-system responsible for a typical agent behavior. The next

section present a solution for designing agents from object in this way.

3. THE ARCHITECTURE BRAINSTORM

A software architecture [Shaw 96] describes software components, patterns of

component composition and restrictions on these patterns, which allow systems to be

built. An agent architecture allow multi-agent systems to be built in term of given

components and interfaces among them.

We have developed an agent architecture denominated Brainstorm for extending objects

to support agent behavior. In such way, agent characteristic behavior has been

encapsulated in components and specific interfaces have been defined for connecting

those agent components.

In the Brainstorm context, a multi-agent system is defined as a reflective system, which is

causally connected to an object-oriented system defined in the base level. The causal

connection is established when an object receives a message: it is intercepted by the

meta-level, which decides what to do with it. For example, an agent can decide to deny a

specific request of another agent.

The architecture has been built using a meta-object approach. An object and a set of

meta-objects define an agent. Each meta-object incorporates agent functionality to

simple objects.

The functionality that can be added to objects from meta-objects can be observed in

Figure 4. We can see two object-agents. The agent A has associated seven meta-objects

and the agent B has four. Requirements of each agent originates the necessity of different

quantity and types of meta-objects. For example, the agent A uses a particular

communication language (by a communication meta-object), a particular set of mental

attitudes (by a knowledge meta-object) and functionality related to their hybrid behavior

(reaction (by a reactor meta-object), deliberation (by a deliberator meta-object) and

learning (by a learner meta-object)), and perceive changes in its environment originated

by the agent B and one given object (by two perception meta-objects).

In the Figure, we can see agent A observing agent B by a perceptor meta-object. In

addition to perceptive connections, agents can interact among them sending messages

using a communication language.

Also, cooperative decisions can be made using an special object (cooperative element in

the Figure) which can be acceded by a given set of agents in contrast of the rest of the

private components.

Several reflective levels composed by meta-objects can be observed in each agent. Each

level is connected to the lower level by reflection. In other words, each level intercepts

all event of its lower level and changes its limited behavior.

The first meta-level is composed by a communication meta-object, a knowledge meta-

object and a set of perception meta-objects. These meta-objects works on messages

received by the base level (the object base). This level is responsible for recognizing

messages that belong to the communication language, for managing the mental state, and

observing messages that can represent interesting situations for the agent.

The second meta-level is responsible for acting. The possible ways for acting are reaction

and/or deliberation. Therefore, it is possible have in this level a reactor meta-object

and/or a deliberator meta-object. These meta-objects work on communications

processed by the communication meta-object and on interesting situations discovered by

the situation manager. A situation manager (black circle in Figure 4) analyzes whether a

situation of interest is present. For it, it uses as data the received communications and the

messages observed by perceptors.

The third meta-level is optional. Learner meta-objects are responsible for learning from

experiences and for using these experiences in future decisions. These meta-objects can

work on reactions and on decision algorithms used by deliberators.

a communication
meta-object

a reactor
meta-object

an object

agent B

a knowledge
meta-object

perception
meta-objects

an object

agent A

element
element

an object

a communication
meta-object

a knowledge
meta-object

a reactor
meta-object a deliberative

meta-object

a learner
meta-object

an object

perception
meta-objects

cooperative

Figure 4 - Brainstorm agents.

The mentioned meta-objects are the main architectural components in terms of agent

instances. In terms of agent class there is n architectural component named MetaAgent

which is materialized in the meta-level of a class. This component is responsible of the

process of meta-object instanciation. When a class instanciation message is received by

an agent class, its associated meta-agent intercepts it and generates the meta-level of the

new object-agent. Meta-agents create the meta-objects needed for satisfying the agent

specification. Thus, it is possible to define different types of agents in the same system.

The following sections present in detail each component of the architecture Brainstorm.

3.1 The communication component

Communication meta-object classes defines communication protocols which may be

adopted by agents. Agents that want to interact have associated instances of the same

communication meta-object class.

When an object-agent receives a message m that belong to its communication language

(see Figure 5), this message is intercepted by its agent communication meta-object by a

classical meta-object mechanism. This mechanism actives the methods handleMessage()

of the first meta-level with the intercepted message as argument.

Figure 5 - Communication.

That message is then analyzed by the communication meta-object for deciding what to

do with the message. If the message has been defined either in the object class as an

acting capability or in its communication meta-object class as part of its communication

language, it is registered on a communication message base using an architectural

protocol register(). The priority of managing that message is lower for default.

In this occasion, the deliberator meta-object can intercept the message record() to define

other message priority. For doing so, the deliberator uses its own mental state. For

instance, if a request sender is the boss of the receiver, it has the highest priority of

OBJECT

 META-COMMUNICATOR

 META-DELIBERATOR

m

 m

 record(m)

 record(m)

handleMessage(m)
 . . .
 self record (m).
 . . .
 . . .

attending. Then, the control returns to the meta-communicator and it records that

message in the priority defined by the meta-deliberator.

Each one of the meta-components has defined independent responsibilities. These meta-

component work together showing a transparent connection by a reflection mechanism.

3.2. The perception component

Agents can observe events taking place in their environment. Agents and objects

compose the environment in Brainstorm, and so the message passing is the only source

of events. These events can draw a situation of interest for agents.

To perceive events, agents shall include definitions of perception meta-objects (instances

of MetaPerception class). These meta-objects observe other agents or objects, reflecting

their received messages. Both agents and objects can be observed without they know

they are observed in contract of the classical announce of changes where the observed

object must announce its movements.

Using meta-objects for percepting events in the environment, agents have two

advantageous. One is that the transparency of the perception, the observed agent or

object is not conscience of the observation. The other advantageous is that agents can in

runtime move their observation targets.

This architectural component use the common protocol for meta-objects, the method

handleMessage() for intercepting observed messages.

3.3. The situation manager component

The situation manager is responsible for searching situations of interest. For doing so, it

evaluates its perceptions, received messages and the mental state. Figure 6 shows the

static connections established with the situation manager. Perceptor meta-objects informs

to the situation manager all observed event, the communicator meta-object informs to

the situation manager all received communication. The situation manager can see and use

the knowledge and believes encapsulated in the component named brain.

Here we present one architectural component, brain. This component is responsible for

the mental state of the agent. Details about this component are showed in the next

section.

Figure 6 - Connection to the situation manager.

The situation manager uses information about perception, communication and mental

attitudes for detecting interesting situation. Whenever an interesting situation is detected,

a method using a protocol newSituation() is invoked on the own situation manager.

Transparently this message is reflected by the meta-objects MetaReactor and

MetaDeliberator of the next meta-level. These meta-objects decide how to manage such

new situation.

For example, an agent Agenda may want to know when given people take particular

types of commitments. The agent wants to be more careful on the evaluation of

accepting of commitments that involve people that are related to rivalry groups. The

agent could ask to each agent agenda for such information (through a message), but a

better solution would be to put sensors on the agendas to observe their commitment

management.

The implementation of these sensors is very simple: the agent agenda associates a

perception meta-object to the another agendas to observe the reception of the messages

canAccept(aCommitment) and accept(aCommitment). With information about

intercepted messages and the mental state, the agenda’ situation manager can analyze

whether such commitment is a interesting fact. If it is the case, it sends the message

newSituation() to itself, which is reflected by both the reaction and deliberation meta-

objects that evaluates what to do with such new situation. The reactor can produce a

reaction. The deliberator can analyze what actions to take.

3.4. The knowledge component

This architectural meta-component permits objects managing logical structures for

mental attitudes. Object-agents need an instance of this component.

The architecture prescribes objects using modules composed by logic clauses for

managing mental attitudes. The type of clauses this component can manage is selected

perception
meta-objects

a communicator
meta-object

a knowledge
meta-object a brain

a situation
manager

among a big set of possibilities since there is not a general agreement about both the set

of mental attitudes and the relationships among them that should shape agent mental

states. Several formal frameworks have been proposed [Cohen 90] [Rao 91] [van Linder

96] [Huang 96] in order to elucidate relations among mental components. Any extension

of classical logic programming that applies these theoretical concepts can be adopted by

particular agents.

The object uses logic modules in the base level. This usage is reflected by the meta-

knowledge and managed by the component named brain. The component Brain has

defined as its interface the needed protocol for maintaining and consulting a knowledge

base. The Brainstorm architecture prescribes that Brain is an specialization of the

classical logic programming.

From the programming point of view, this capability is achieved since an integration of

an object-oriented language with a logic language is possible [Ishikawa 86] [Fukanaga

86] [Mello 87] [Vaucher 88]. Extensions of classical logic programming (such as [Costa

95] [Amandi 97a]) for managing mental attitudes are used as a base of the component

Brain.

The extensions to a Prolog interpreter can be easily added as specialization of Brain

component since the knowledge meta-object administrates the integration with objects.

This meta-object permits the combination of different logic modules referred by instance

variables and methods and makes it temporally available for use.

3.5. The reaction component

The reaction meta-object has the functionality of reaction to given situations. A reaction

itself is composed by a situation and a sequence of actions that are executed when this

situation is detected. So this component would in summary be to use for quick answers

to particular situations.

The reaction meta-object of an agent manages immediately each detected interesting

situation whether a reaction was defined for such situation. After that, the deliberator

also can act.

The Brainstorm architecture prescribes a meta-object with reflective connections with

the situation manager in the lower level and with the learner meta-object in the upper

level. This prescription has the flexibility of changing the behavior of agents as main

advantageous.

3.6. The deliberation component

The deliberation component is responsible for the intelligent and autonomous acting form

of the agent. The architecture prescribe a meta-object for this component. This meta-

object is connected by reflection with the situation manager, the meta-communicator and

the meta-learner (if there is one).

An agent acting form is determined by the manner in which it has to act when: (a) it

perceives a situation of interest, (b) it receives a message, and (c) it decides to do

something. Different acting forms are defined in different subclasses of the

MetaDeliberator class or its parts. Brainstorm architecture defines two important parts

for abstracting decision behavior. Figure 7 shows those components.

Figure 7 - Deliberation component and its decision subcomponents.

When an agent perceives a situation (by its situation manager), it must decide what to do

in such situation. For doing so, the meta-deliberation intercepts the detected situation

and delegates it to one of its simple decision algorithm.

When an agent receives a message, it have attend the message. For doing so, first the

meta-deliberation intercepts the received message for defining a priority of attending.

Second when the message is attended it delegates the communication message to one of

its social decision algorithm. Such algorithm analyzes the communication considering the

social state and decide what is the answer.

An agent also act without the necessity of any communication or perception of

situations. A quantum of time is given to each agent for acting freely if parallel process is

not possible. Agents use this time for treating pending communications, making plans to

achieve their goals (using the available planning algorithms), analyzing their old plans,

goals and intentions, and executing actions in their environment. Therefore, it is

necessary to have defined priority rules for guiding the decisions about what to do next.

a meta-deliberator

simple decision
algorithm

social decision
algorithm

3.7. The learner component

The learner component is defined as a meta-object by the Brainstorm architecture. It

intercepts reactions and deliberations. The reactions are analyzed permitting future

changes on themselves. Deliberations can be altered incorporating new points of view on

the object on analyses.

For example, an instance of this component is a case-based reasoning engine. This

element can intercept, for example, a deliberation process that use a planning algorithm,

deciding the resulting action plan.

4. RESULTS AND EXPERIENCES

The Brainstorm architecture has been formally specified using the Z language. For these

schemes, seven properties were proved. We have been proved that all message received

by an object-agent take a right way from an agent behavior point of view. Detail of these

proves can be found in [Amandi 97b].

In addition to the formal results, two experiences were made. First, a multi-agent

systems for simulating robots in a room was developed using the Smalltalk language.

Second, a multi-agent systems for managing personal agendas was implemented in the

same language, reusing several decision algorithms.

These experimental cases showed that the abstractions defined in Brainstorm can be

directly used and helped to construct a base of reusable decision algorithms and

communication languages.

5. RELATED WORK

Several agent architectures have been proposed in the literature (i.e. [Ferguson 92]

[Müller 94] [Hayes-Roth 95]) describing the main components and interfaces of software

agents. These agent architectures prescribe a computational solution for agents

construction.

In the other hand, lots computational solutions of software agents have been built on

object-oriented languages and lots agent specific languages have been developed on

object-oriented concepts [Fisher 94] [Kolb 95] [Poggi 95]. In spite of that, the existent

agent architectures have not considered in their design the usage of object-oriented

concepts.

6. CONCLUSIONS

Brainstorm is a software architecture that prescribes an object-oriented agent solution,

allowing thus the usage of object-oriented languages in the agent implementations. The

object-oriented base has two advantageous: old object-oriented systems can be extended

for becoming multi-agent systems and all support for object-oriented systems can be

used for building agents.

The Brainstorm architecture prescribes several reflective components materialized by

meta-objects. This prescription makes possible the dynamic modification of the structure

and behavior of agents. Such flexibility also allows old objects become agents.

7. REFERENCES

[Amandi 97a] Amandi, A.; Price, A. An Extension of Logic Programming for

Manipulating Agent Mental States. In: Proceedings of the Artificial Intelli gence and Soft

Computing. Canada, 1997. p.311-314.

[Amandi 97b] Amandi, A. Programação de Agentes Orientada a Objetos. Doctoral

Thesis. Porto Alegre: UFRGS, 1997.

[Cohen 90] Cohen P., Levesque H. Intention is Choice with Commitment, Artificial

Intelligence, 42(2), 1990.

[Costa 95] Costa Mora, M.; Lopes, J.; Coelho, H. Modeling Intentions with Extended

Logic Programming. Proceedings of the Brazili an Symposium on Artificial Intelli gence.

1995. P.69-78.

[Demazeau 91] Demazeau Y., Muller J.P. From reactive to intentional agents. In

Decentralized Artificial Intelligence 2. pp.3-14. 1991.

[Ferguson 92] Ferguson I. TouringMachines: Autonomous Agents with Attitudes.

Computer, 25(5), pp.51-55, May 1992.

[Fisher 94] Fisher M. A Survey of Concurrent METATEM-The Language and its

Applications. Temporal Logic. 1994. pp.480-505. (LNAI 827).

[Fukanaga 86] Fukunaga, K; Hirose, S. An Experience with a Prolog-based Object-

Oriented Language. SIGPLAN Notices, 21(11), pp.224-231, Nov. 1986.

[Gasser 92] Gasser, L.; Briot, J.P. Object-Oriented Concurrent Programming and

Distributed Artificial Intelli gence. In: Distributed Artificial Intelli gence: Theory and

Praxis. Kluwer. 1992.

[Hayes-Roth 95] Hayes-Roth B. An architecture for adaptive intelli gent systems.

Artificial Intelligence, 72(1-2), pp.329-365, Jan. 1995.

[Huang 96] Huang Z.; Masuch, M.; Pólos, L. ALX, an action logic for agents with

bounded rationality, Artificial Intelligence, 82(1), 1996, pp.75-127.

[Ishikawa 86] Ishikawa, Y; Tokoro, M. A Concurrent Object-Oriented Knowledge

Representation Language Oriente84/K: Its Features and Implementations. SIGPLAN

Notices, 21(11), pp.232-241, Nov. 1986.

[Kolb 95] Kolb M. A Cooperation Language. Proceeding of the International

Conference on Multi-Agent Systems. 1995. pp. 233-238.

[Kolodner 93] Kolodner, J. Case-Based Reasoning. 1993.

[Maes 87] Maes, P. Concepts and Experiments in Computational Reflection.

Proceedings of the Object-Oriented Programming Systems, Languages, and Applications

Conference, 1987. p.147-155.

[Mello 87] Mello, P; Natali, A. Objects as Communicating Prolog Units. Proceedings of

the European Conference on Object-Oriented Programming. 1987. pp.181-191.

[Müller 94] Müller J., Pischel M. Modeling Interacting Agents in Dynamic

Environments. Proceeding of the European Conference on Artificial Intelli gence, 1994.

p.709-713.

[Poggi 95] Poggi A. DAISY: An Object-Oriented System for Distributed Artificial

Intelligence. Intelligent Agents. 1995. p.341-354. (LNAI v. 890).

[Rao 91] Rao A.; Georgeff M. Modelli ng Rational Agents within a BDI-Architecture,

Proceedings of Knowledge Representation and Reasoning (KR'91), pp.473-484, April,

1991.

[Shaw 96] Shaw, M.; Garlan, D. Software Architectures. Prentice Hall. 1996.

[Shoham 93] Shoham, Y. Agent-Oriented Programming. Artificial Intelli gence. v.60, n.1,

p.51-92, Mar. 1993.

[van Linder 96] B. van Linder, W. van der Hoek, Meyer, J. Formalising Motivational

Attitudes of Agents: On Preferences, Goals, and Commitments. Intelli gent Agent

II,1996.

[Vaucher 88] Vaucher, J; Lapalme, G; Malenfant, J. SCOOP: Structured Concurrent

Object-Oriented Prolog. Proceedings of the European Conference on Object-Oriented

Programming, 1988. pp.191-211. (LNCS 322).

[Weerasooriya 95] Weerasooriya, D.; Rao, A.; Ramamohanarao, K. Design of a

Concurrent Agent-Oriented Language. In: Wooldridge, M.; Jennings, N. (Eds.).

Intelligent Agents. Berlin: Springer-Verlag, 1995. p.386-401. (LNAI, v. 890).

